新型喹唑啉衍生物抑制真菌II族内含子剪接。

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Olga Fedorova, Michelle Luo, G Erik Jagdmann, Michael C Van Zandt, Luke Sisto, Anna Marie Pyle
{"title":"新型喹唑啉衍生物抑制真菌II族内含子剪接。","authors":"Olga Fedorova, Michelle Luo, G Erik Jagdmann, Michael C Van Zandt, Luke Sisto, Anna Marie Pyle","doi":"10.1021/acschembio.4c00631","DOIUrl":null,"url":null,"abstract":"<p><p>We report the discovery of small molecules that target the RNA tertiary structure of self-splicing group II introns and display potent antifungal activity against yeasts, including the major public health threat <i>Candida parapsilosis</i>. High-throughput screening efforts against a yeast group II intron resulted in an inhibitor class which was then synthetically optimized for enhanced inhibitory activity and antifungal efficacy. The most highly refined compounds in this series display strong, gene-specific antifungal activity against <i>C. parapsilosis</i>. This work demonstrates the utility of combining advanced RNA screening methodologies with medicinal chemistry pipelines to identify high-affinity ligands targeting RNA tertiary structures with important roles in human health and disease.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Quinazoline Derivatives Inhibit Splicing of Fungal Group II Introns.\",\"authors\":\"Olga Fedorova, Michelle Luo, G Erik Jagdmann, Michael C Van Zandt, Luke Sisto, Anna Marie Pyle\",\"doi\":\"10.1021/acschembio.4c00631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report the discovery of small molecules that target the RNA tertiary structure of self-splicing group II introns and display potent antifungal activity against yeasts, including the major public health threat <i>Candida parapsilosis</i>. High-throughput screening efforts against a yeast group II intron resulted in an inhibitor class which was then synthetically optimized for enhanced inhibitory activity and antifungal efficacy. The most highly refined compounds in this series display strong, gene-specific antifungal activity against <i>C. parapsilosis</i>. This work demonstrates the utility of combining advanced RNA screening methodologies with medicinal chemistry pipelines to identify high-affinity ligands targeting RNA tertiary structures with important roles in human health and disease.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acschembio.4c00631\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00631","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了针对自剪接II组内含子的RNA三级结构的小分子的发现,并显示出对酵母菌的有效抗真菌活性,包括主要的公共卫生威胁假丝酵母病。针对酵母II族内含子的高通量筛选产生了一类抑制剂,然后对其进行了综合优化,以增强其抑制活性和抗真菌功效。该系列中最精细的化合物显示出强大的基因特异性抗真菌活性。这项工作证明了将先进的RNA筛选方法与药物化学管道相结合,以识别在人类健康和疾病中起重要作用的靶向RNA三级结构的高亲和力配体的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Quinazoline Derivatives Inhibit Splicing of Fungal Group II Introns.

We report the discovery of small molecules that target the RNA tertiary structure of self-splicing group II introns and display potent antifungal activity against yeasts, including the major public health threat Candida parapsilosis. High-throughput screening efforts against a yeast group II intron resulted in an inhibitor class which was then synthetically optimized for enhanced inhibitory activity and antifungal efficacy. The most highly refined compounds in this series display strong, gene-specific antifungal activity against C. parapsilosis. This work demonstrates the utility of combining advanced RNA screening methodologies with medicinal chemistry pipelines to identify high-affinity ligands targeting RNA tertiary structures with important roles in human health and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信