Surendrasingh Y Sonaye, Renan Dal-Fabbro, Marco C Bottino, Prabaha Sikder
{"title":"3d打印聚醚醚酮-磷酸镁生物活性复合材料用于颅面和骨科植入物的骨整合。","authors":"Surendrasingh Y Sonaye, Renan Dal-Fabbro, Marco C Bottino, Prabaha Sikder","doi":"10.1021/acsbiomaterials.4c01597","DOIUrl":null,"url":null,"abstract":"<p><p>Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity. However, one major limitation is that the bioceramic particles embedded in the PEEK matrix can degrade over time, compromising the implant's long-term bioactivity and mechanical properties. To address this limitation, in this study, we utilized a unique bioceramic known as amorphous magnesium phosphate (AMP). AMP is a metastable phase of magnesium phosphate that nanocrystallizes in a physiological medium to stable bioactive phases exhibiting low degradation kinetics and high bioactivity. Thus, based on this property of AMP, we hypothesize that AMP-PEEK composites will exhibit sustained biodegradation kinetics, help maintain long-term osseointegration, and inhibit mechanical property degradation. Herein, we reported on a detailed <i>in vitro</i> degradation analysis of the developed AMP-PEEK composite 3D-printable filaments and the osseointegration capacity when implanted in a rat femoral model. The AMP-PEEK composite demonstrates controlled degradation kinetics, with tensile strength progressively decreasing from 120 to 70 MPa over a 28-day period due to hydrolytic degradation, which aligns with its role as a bioresorbable material. Notably, our findings confirm that AMP-PEEK composite osseointegration is on par with clinical gold-standard titanium implants. Thus, this study establishes a unique magnesium phosphate and PEEK-based bioactive composite material with promising potential for developing standalone dental and craniofacial implants.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osseointegration of 3D-Printable Polyetheretherketone-Magnesium Phosphate Bioactive Composites for Craniofacial and Orthopedic Implants.\",\"authors\":\"Surendrasingh Y Sonaye, Renan Dal-Fabbro, Marco C Bottino, Prabaha Sikder\",\"doi\":\"10.1021/acsbiomaterials.4c01597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity. However, one major limitation is that the bioceramic particles embedded in the PEEK matrix can degrade over time, compromising the implant's long-term bioactivity and mechanical properties. To address this limitation, in this study, we utilized a unique bioceramic known as amorphous magnesium phosphate (AMP). AMP is a metastable phase of magnesium phosphate that nanocrystallizes in a physiological medium to stable bioactive phases exhibiting low degradation kinetics and high bioactivity. Thus, based on this property of AMP, we hypothesize that AMP-PEEK composites will exhibit sustained biodegradation kinetics, help maintain long-term osseointegration, and inhibit mechanical property degradation. Herein, we reported on a detailed <i>in vitro</i> degradation analysis of the developed AMP-PEEK composite 3D-printable filaments and the osseointegration capacity when implanted in a rat femoral model. The AMP-PEEK composite demonstrates controlled degradation kinetics, with tensile strength progressively decreasing from 120 to 70 MPa over a 28-day period due to hydrolytic degradation, which aligns with its role as a bioresorbable material. Notably, our findings confirm that AMP-PEEK composite osseointegration is on par with clinical gold-standard titanium implants. Thus, this study establishes a unique magnesium phosphate and PEEK-based bioactive composite material with promising potential for developing standalone dental and craniofacial implants.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01597\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01597","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Osseointegration of 3D-Printable Polyetheretherketone-Magnesium Phosphate Bioactive Composites for Craniofacial and Orthopedic Implants.
Polyetheretherketone (PEEK) is a high-performance polymer material for developing varying orthopedic, spine, cranial, maxillofacial, and dental implants. Despite their commendable mechanical properties and biocompatibility, the major limitation of PEEK implants is their low affinity to osseointegrate with the neighboring bone. Over the last two decades, several efforts have been made to incorporate bioactive components such as bioceramic particles in PEEK to enhance its osseointegration capacity. However, one major limitation is that the bioceramic particles embedded in the PEEK matrix can degrade over time, compromising the implant's long-term bioactivity and mechanical properties. To address this limitation, in this study, we utilized a unique bioceramic known as amorphous magnesium phosphate (AMP). AMP is a metastable phase of magnesium phosphate that nanocrystallizes in a physiological medium to stable bioactive phases exhibiting low degradation kinetics and high bioactivity. Thus, based on this property of AMP, we hypothesize that AMP-PEEK composites will exhibit sustained biodegradation kinetics, help maintain long-term osseointegration, and inhibit mechanical property degradation. Herein, we reported on a detailed in vitro degradation analysis of the developed AMP-PEEK composite 3D-printable filaments and the osseointegration capacity when implanted in a rat femoral model. The AMP-PEEK composite demonstrates controlled degradation kinetics, with tensile strength progressively decreasing from 120 to 70 MPa over a 28-day period due to hydrolytic degradation, which aligns with its role as a bioresorbable material. Notably, our findings confirm that AMP-PEEK composite osseointegration is on par with clinical gold-standard titanium implants. Thus, this study establishes a unique magnesium phosphate and PEEK-based bioactive composite material with promising potential for developing standalone dental and craniofacial implants.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture