{"title":"钯催化双环[1.1.0]丁烷与醛的[2σ + 2π]环加成反应","authors":"Tianzhu Qin, Mengyang He, Weiwei Zi","doi":"10.1038/s44160-024-00659-6","DOIUrl":null,"url":null,"abstract":"Cycloaddition reactions of bicyclo[1.1.0]butanes (BCBs) with 2π components are a powerful tool for preparing C(sp3)-rich arene bioisosteres. Despite enormous progress in this field, catalytic enantioselective cycloadditions of BCBs that produce enantioenriched three-dimensional bioisosteres are underdeveloped. Here we report a palladium-catalysed [3 + 2] cycloaddition reaction of vinyl-carbonyl-BCBs with carbonyl compounds, including formaldehyde, activated ketones, and aliphatic and aromatic aldehydes. This approach provides quick access to a wide variety of 2-oxabicyclo[2.1.1]hexanes. Density functional theory calculations indicate that the reaction occurs through a zwitterionic mechanism involving σ-bond cleavage, nucleophilic addition and allylic substitution. When (R,R)-ANDEN-phenyl Trost ligand is used, the stereoselectivity of the addition of palladium-zwitterionic enolates to carbonyl can be controlled to achieve enantioselective [3 + 2] cycloadditions. We further demonstrate the practicality of the method by carrying out several downstream transformations of cycloaddition products. Palladium catalysis enables the cycloaddition reaction between vinyl-carbonyl-bicyclo[1.1.0]butanes and aldehydes or ketones for the synthesis of 2-oxabicyclo[2.1.1]hexanes, an arene bioisotere. Enantiocontrol over the zwitterionic [2σ + 2π] cycloaddition process can be achieved using the commercially available (R,R)-ANDEN-phenyl Trost ligand.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"4 1","pages":"124-133"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palladium-catalysed [2σ + 2π] cycloaddition reactions of bicyclo[1.1.0]butanes with aldehydes\",\"authors\":\"Tianzhu Qin, Mengyang He, Weiwei Zi\",\"doi\":\"10.1038/s44160-024-00659-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cycloaddition reactions of bicyclo[1.1.0]butanes (BCBs) with 2π components are a powerful tool for preparing C(sp3)-rich arene bioisosteres. Despite enormous progress in this field, catalytic enantioselective cycloadditions of BCBs that produce enantioenriched three-dimensional bioisosteres are underdeveloped. Here we report a palladium-catalysed [3 + 2] cycloaddition reaction of vinyl-carbonyl-BCBs with carbonyl compounds, including formaldehyde, activated ketones, and aliphatic and aromatic aldehydes. This approach provides quick access to a wide variety of 2-oxabicyclo[2.1.1]hexanes. Density functional theory calculations indicate that the reaction occurs through a zwitterionic mechanism involving σ-bond cleavage, nucleophilic addition and allylic substitution. When (R,R)-ANDEN-phenyl Trost ligand is used, the stereoselectivity of the addition of palladium-zwitterionic enolates to carbonyl can be controlled to achieve enantioselective [3 + 2] cycloadditions. We further demonstrate the practicality of the method by carrying out several downstream transformations of cycloaddition products. Palladium catalysis enables the cycloaddition reaction between vinyl-carbonyl-bicyclo[1.1.0]butanes and aldehydes or ketones for the synthesis of 2-oxabicyclo[2.1.1]hexanes, an arene bioisotere. Enantiocontrol over the zwitterionic [2σ + 2π] cycloaddition process can be achieved using the commercially available (R,R)-ANDEN-phenyl Trost ligand.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"4 1\",\"pages\":\"124-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00659-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00659-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Palladium-catalysed [2σ + 2π] cycloaddition reactions of bicyclo[1.1.0]butanes with aldehydes
Cycloaddition reactions of bicyclo[1.1.0]butanes (BCBs) with 2π components are a powerful tool for preparing C(sp3)-rich arene bioisosteres. Despite enormous progress in this field, catalytic enantioselective cycloadditions of BCBs that produce enantioenriched three-dimensional bioisosteres are underdeveloped. Here we report a palladium-catalysed [3 + 2] cycloaddition reaction of vinyl-carbonyl-BCBs with carbonyl compounds, including formaldehyde, activated ketones, and aliphatic and aromatic aldehydes. This approach provides quick access to a wide variety of 2-oxabicyclo[2.1.1]hexanes. Density functional theory calculations indicate that the reaction occurs through a zwitterionic mechanism involving σ-bond cleavage, nucleophilic addition and allylic substitution. When (R,R)-ANDEN-phenyl Trost ligand is used, the stereoselectivity of the addition of palladium-zwitterionic enolates to carbonyl can be controlled to achieve enantioselective [3 + 2] cycloadditions. We further demonstrate the practicality of the method by carrying out several downstream transformations of cycloaddition products. Palladium catalysis enables the cycloaddition reaction between vinyl-carbonyl-bicyclo[1.1.0]butanes and aldehydes or ketones for the synthesis of 2-oxabicyclo[2.1.1]hexanes, an arene bioisotere. Enantiocontrol over the zwitterionic [2σ + 2π] cycloaddition process can be achieved using the commercially available (R,R)-ANDEN-phenyl Trost ligand.