{"title":"具有高阻燃性能的co2源聚碳酸酯氯丙烯","authors":"Yue Gong, Xiao-Feng Zhu, Guan-Wen Yang, Meng Ma, Xu Wang, Jie Xu, Xin Shu, Guang-Peng Wu","doi":"10.1007/s10118-025-3261-6","DOIUrl":null,"url":null,"abstract":"<div><p>The alternating copolymer of CO<sub>2</sub> with epoxide is a green plastic that can efficiently transform CO<sub>2</sub> into valuable chemicals. Despite the significant advances made, the restricted practical application of CO<sub>2</sub>-sourced polycarbonates due to their lack of functionality has hindered field development. We successfully demonstrated the flame retardancy of poly(chloropropylene carbonate) (PCPC), a perfectly alternating copolymer of epichlorohydrin (ECH) and CO<sub>2</sub>. This was prepared at a 200-gram scale using a high-efficacy tetranuclear organoborane catalyst. PCPC’s excellent flame-retardant performance has been proven by both the vertical combustion test (UL94 V-0) and the limiting oxygen index (LOI) value (29.1%). The underlaid flame-retardant mechanism of PCPC was clearly elucidated. As a result, we confirmed that the generated cyclic carbonates and concurrently released flame-retardant chlorine radicals, hydrogen chloride, and CO<sub>2</sub> during combustion render PCPC an excellent flame retardant. Furthermore, we investigated the practicability of PCPC as a halogen-rich polymeric flame retardant by blending it with commercial bisphenol A polycarbonate (BPA-PC). PCPC upgraded the flame retardancy rating of BPA polycarbonate from V-2 to V-0 even with a mere 1 wt% addition. It is our hope that this result will prove useful in future developments of advanced CO<sub>2</sub>-sourced polymeric materials.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 1","pages":"110 - 119"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2-Sourced Poly(chloropropylene carbonate) with High Flame-Retardant Performance\",\"authors\":\"Yue Gong, Xiao-Feng Zhu, Guan-Wen Yang, Meng Ma, Xu Wang, Jie Xu, Xin Shu, Guang-Peng Wu\",\"doi\":\"10.1007/s10118-025-3261-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The alternating copolymer of CO<sub>2</sub> with epoxide is a green plastic that can efficiently transform CO<sub>2</sub> into valuable chemicals. Despite the significant advances made, the restricted practical application of CO<sub>2</sub>-sourced polycarbonates due to their lack of functionality has hindered field development. We successfully demonstrated the flame retardancy of poly(chloropropylene carbonate) (PCPC), a perfectly alternating copolymer of epichlorohydrin (ECH) and CO<sub>2</sub>. This was prepared at a 200-gram scale using a high-efficacy tetranuclear organoborane catalyst. PCPC’s excellent flame-retardant performance has been proven by both the vertical combustion test (UL94 V-0) and the limiting oxygen index (LOI) value (29.1%). The underlaid flame-retardant mechanism of PCPC was clearly elucidated. As a result, we confirmed that the generated cyclic carbonates and concurrently released flame-retardant chlorine radicals, hydrogen chloride, and CO<sub>2</sub> during combustion render PCPC an excellent flame retardant. Furthermore, we investigated the practicability of PCPC as a halogen-rich polymeric flame retardant by blending it with commercial bisphenol A polycarbonate (BPA-PC). PCPC upgraded the flame retardancy rating of BPA polycarbonate from V-2 to V-0 even with a mere 1 wt% addition. It is our hope that this result will prove useful in future developments of advanced CO<sub>2</sub>-sourced polymeric materials.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 1\",\"pages\":\"110 - 119\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3261-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3261-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
CO2-Sourced Poly(chloropropylene carbonate) with High Flame-Retardant Performance
The alternating copolymer of CO2 with epoxide is a green plastic that can efficiently transform CO2 into valuable chemicals. Despite the significant advances made, the restricted practical application of CO2-sourced polycarbonates due to their lack of functionality has hindered field development. We successfully demonstrated the flame retardancy of poly(chloropropylene carbonate) (PCPC), a perfectly alternating copolymer of epichlorohydrin (ECH) and CO2. This was prepared at a 200-gram scale using a high-efficacy tetranuclear organoborane catalyst. PCPC’s excellent flame-retardant performance has been proven by both the vertical combustion test (UL94 V-0) and the limiting oxygen index (LOI) value (29.1%). The underlaid flame-retardant mechanism of PCPC was clearly elucidated. As a result, we confirmed that the generated cyclic carbonates and concurrently released flame-retardant chlorine radicals, hydrogen chloride, and CO2 during combustion render PCPC an excellent flame retardant. Furthermore, we investigated the practicability of PCPC as a halogen-rich polymeric flame retardant by blending it with commercial bisphenol A polycarbonate (BPA-PC). PCPC upgraded the flame retardancy rating of BPA polycarbonate from V-2 to V-0 even with a mere 1 wt% addition. It is our hope that this result will prove useful in future developments of advanced CO2-sourced polymeric materials.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.