一种扭转准零刚度收集器系统

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Qiang Wang  (, ), Jiaxi Zhou  (, ), Kai Wang  (, ), Hongbin Pan  (, ), Jinghang Gao  (, ), Qida Lin  (, ), Dongguo Tan  (, )
{"title":"一种扭转准零刚度收集器系统","authors":"Qiang Wang \n (,&nbsp;),&nbsp;Jiaxi Zhou \n (,&nbsp;),&nbsp;Kai Wang \n (,&nbsp;),&nbsp;Hongbin Pan \n (,&nbsp;),&nbsp;Jinghang Gao \n (,&nbsp;),&nbsp;Qida Lin \n (,&nbsp;),&nbsp;Dongguo Tan \n (,&nbsp;)","doi":"10.1007/s10409-024-24252-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel idea by integrating a torsion dynamic vibration absorber with a triboelectric energy harvester to realize synchronous torsional vibration suppression and energy harvesting in a rotor system. The most fantastic feature of the proposed torsion harvester-absorber system (HAS) is the quasi-zero-stiffness (QZS) characteristic for suppressing and harvesting low-frequency vibration energy. The QZS characteristic is realized by combining negative stiffness magnet couplings (NSMC) in parallel connection with a pair torsion coil spring. A theoretical model of the NSMC is established based on the equivalent magnetic charge method, and parametric studies are conducted to provide a guideline for the design of the NSMC. Furthermore, the dynamic model of the host oscillator with a torsion QZS HAS is established based on Lagrange’s equation, and then the dynamic amplification factor is obtained using the harmonic balance method. The effects of geometric parameters on both the performances of vibration mitigation and energy harvesting are investigated. Finally, the parameters of the torsion QZS HAS are optimized using <i>H</i><sub>∞</sub> optimization method and genetic algorithm, respectively. This enables the torsion QZS HAS to effectively suppress low-frequency vibrations of the rotor system while simultaneously harvesting energy over a wide frequency band.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A torsion quasi-zero stiffness harvester-absorber system\",\"authors\":\"Qiang Wang \\n (,&nbsp;),&nbsp;Jiaxi Zhou \\n (,&nbsp;),&nbsp;Kai Wang \\n (,&nbsp;),&nbsp;Hongbin Pan \\n (,&nbsp;),&nbsp;Jinghang Gao \\n (,&nbsp;),&nbsp;Qida Lin \\n (,&nbsp;),&nbsp;Dongguo Tan \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-024-24252-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel idea by integrating a torsion dynamic vibration absorber with a triboelectric energy harvester to realize synchronous torsional vibration suppression and energy harvesting in a rotor system. The most fantastic feature of the proposed torsion harvester-absorber system (HAS) is the quasi-zero-stiffness (QZS) characteristic for suppressing and harvesting low-frequency vibration energy. The QZS characteristic is realized by combining negative stiffness magnet couplings (NSMC) in parallel connection with a pair torsion coil spring. A theoretical model of the NSMC is established based on the equivalent magnetic charge method, and parametric studies are conducted to provide a guideline for the design of the NSMC. Furthermore, the dynamic model of the host oscillator with a torsion QZS HAS is established based on Lagrange’s equation, and then the dynamic amplification factor is obtained using the harmonic balance method. The effects of geometric parameters on both the performances of vibration mitigation and energy harvesting are investigated. Finally, the parameters of the torsion QZS HAS are optimized using <i>H</i><sub>∞</sub> optimization method and genetic algorithm, respectively. This enables the torsion QZS HAS to effectively suppress low-frequency vibrations of the rotor system while simultaneously harvesting energy over a wide frequency band.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 9\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24252-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24252-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种将扭振动态减振器与摩擦电能量采集器集成在一起,实现转子系统扭振同步抑制和能量收集的新思路。所提出的扭转收集器系统(HAS)最神奇的特性是准零刚度(QZS)特性,用于抑制和收集低频振动能量。QZS特性是通过将负刚度磁铁联轴器(NSMC)与一对扭转线圈弹簧并联来实现的。基于等效磁荷法建立了NSMC的理论模型,并进行了参数化研究,为NSMC的设计提供了指导。在此基础上,基于拉格朗日方程建立了带有扭转QZS HAS的主振的动力学模型,并利用谐波平衡法得到了主振的动态放大系数。研究了几何参数对减振性能和能量收集性能的影响。最后,分别采用H∞优化方法和遗传算法对扭转QZS HAS的参数进行了优化。这使得扭转QZS HAS能够有效地抑制转子系统的低频振动,同时在宽频带上收集能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A torsion quasi-zero stiffness harvester-absorber system

This paper proposes a novel idea by integrating a torsion dynamic vibration absorber with a triboelectric energy harvester to realize synchronous torsional vibration suppression and energy harvesting in a rotor system. The most fantastic feature of the proposed torsion harvester-absorber system (HAS) is the quasi-zero-stiffness (QZS) characteristic for suppressing and harvesting low-frequency vibration energy. The QZS characteristic is realized by combining negative stiffness magnet couplings (NSMC) in parallel connection with a pair torsion coil spring. A theoretical model of the NSMC is established based on the equivalent magnetic charge method, and parametric studies are conducted to provide a guideline for the design of the NSMC. Furthermore, the dynamic model of the host oscillator with a torsion QZS HAS is established based on Lagrange’s equation, and then the dynamic amplification factor is obtained using the harmonic balance method. The effects of geometric parameters on both the performances of vibration mitigation and energy harvesting are investigated. Finally, the parameters of the torsion QZS HAS are optimized using H optimization method and genetic algorithm, respectively. This enables the torsion QZS HAS to effectively suppress low-frequency vibrations of the rotor system while simultaneously harvesting energy over a wide frequency band.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信