{"title":"微观勒让德变换、正则系综与杰恩斯最大熵原理","authors":"Ramandeep S. Johal","doi":"10.1007/s10701-025-00824-7","DOIUrl":null,"url":null,"abstract":"<div><p>Legendre transform between thermodynamic quantities such as the Helmholtz free energy and entropy plays a key role in the formulation of the canonical ensemble. In the standard treatment, the transform exchanges the independent variable from the system’s internal energy to its conjugate variable—the inverse temperature of the heat reservoir. In this article, we formulate a microscopic version of the transform between the free energy and Shannon entropy of the system, where the conjugate variables are the microstate probabilities and the energies (scaled by the inverse temperature). The present approach gives a non-conventional perspective on the connection between information-theoretic measure of entropy and thermodynamic entropy. We focus on the exact differential property of Shannon entropy, utilizing it to derive central relations within the canonical ensemble. Thermodynamics of a system in contact with the heat reservoir is discussed in this framework. Other approaches, in particular, Jaynes’ maximum entropy principle is compared with the present approach.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic Legendre Transform, Canonical Ensemble and Jaynes’ Maximum Entropy Principle\",\"authors\":\"Ramandeep S. Johal\",\"doi\":\"10.1007/s10701-025-00824-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Legendre transform between thermodynamic quantities such as the Helmholtz free energy and entropy plays a key role in the formulation of the canonical ensemble. In the standard treatment, the transform exchanges the independent variable from the system’s internal energy to its conjugate variable—the inverse temperature of the heat reservoir. In this article, we formulate a microscopic version of the transform between the free energy and Shannon entropy of the system, where the conjugate variables are the microstate probabilities and the energies (scaled by the inverse temperature). The present approach gives a non-conventional perspective on the connection between information-theoretic measure of entropy and thermodynamic entropy. We focus on the exact differential property of Shannon entropy, utilizing it to derive central relations within the canonical ensemble. Thermodynamics of a system in contact with the heat reservoir is discussed in this framework. Other approaches, in particular, Jaynes’ maximum entropy principle is compared with the present approach.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-025-00824-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00824-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Microscopic Legendre Transform, Canonical Ensemble and Jaynes’ Maximum Entropy Principle
Legendre transform between thermodynamic quantities such as the Helmholtz free energy and entropy plays a key role in the formulation of the canonical ensemble. In the standard treatment, the transform exchanges the independent variable from the system’s internal energy to its conjugate variable—the inverse temperature of the heat reservoir. In this article, we formulate a microscopic version of the transform between the free energy and Shannon entropy of the system, where the conjugate variables are the microstate probabilities and the energies (scaled by the inverse temperature). The present approach gives a non-conventional perspective on the connection between information-theoretic measure of entropy and thermodynamic entropy. We focus on the exact differential property of Shannon entropy, utilizing it to derive central relations within the canonical ensemble. Thermodynamics of a system in contact with the heat reservoir is discussed in this framework. Other approaches, in particular, Jaynes’ maximum entropy principle is compared with the present approach.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.