{"title":"等离子体防冰/除冰:利用过冷水滴成像测速的实验研究","authors":"Weiwei Hui, Zhipeng Chen, Jianjun Ma, Xuanshi Meng","doi":"10.1007/s00348-025-03960-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an image velocimetry technique that employs supercooled water droplets as seeding particles in an icing wind tunnel. The innovative work involves reconstructing the pressure distribution using the velocity field measured by the water droplets and providing the water collection efficiency at the leading edge of the airfoil using pathlines. The study compares the relative errors of the velocity fields obtained through traditional particle image velocimetry (PIV) and the supercooled water droplet image velocimetry (SWDIV) methods. Results indicate that the velocity root mean square error of SWDIV is <span>\\(17.4 \\%\\)</span> of the incoming flow velocity, and the average angle error was 5.36°. The streamlines derived from the SWDIV method align well with the water droplet trajectories calculated using the Lagrangian approach, providing a more accurate representation of the flow dynamics involving supercooled water droplets of varying sizes. Using this technique, the study quantitatively analyzes the changing characteristics of the airfoil flow field during the anti-icing and de-icing processes under plasma actuation. Key observations include identifying changes in ice configuration, evaluating water droplet collection efficiency at the leading edge, and analyzing the velocity and pressure fields. In the icing wind tunnel experiments, the incoming flow velocity was 15 <span>\\(\\text {m/s}\\)</span>, resulting in a Reynolds number of <span>\\(1.8 \\times 10^5\\)</span>. The liquid water content was 1.0 <span>\\(\\text {g/m}^3\\)</span>, with a median volume diameter of water droplets at 20 <span>\\(\\upmu \\text {m}\\)</span> and an average diameter of 6.4 <span>\\(\\upmu \\text {m}\\)</span> The static temperature of the incoming flow was − 10 °C. The anti-icing research revealed that plasma actuation prevents icing on the leading edge while maintaining the suction peak. However, runback ice formed downstream of the actuator at low incoming flow velocities, significantly reducing local negative pressure and leading to lift loss. Moreover, the aerodynamic effects generated by plasma reduced the peak water droplet collection coefficient at the leading edge by approximately 0.05. When the airfoil’s leading edge was covered with a 5 mm thick layer of mixed ice, its geometric shape became irregular, and the pressure peak was notably diminished. Upon activation of the plasma actuator, the resulting aerodynamic and thermal coupling melted the surface ice, disrupting the adhesion between the ice and the airfoil surface. This caused the ice to detach and be carried downstream by the airflow, effectively achieving de-icing within approximately 203 s. After ice removal, the negative pressure peak on the upper surface of the airfoil’s leading edge returned to baseline levels, restoring lift to a great degree.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-based anti-/de-icing: an experimental study utilizing supercooled water droplet image velocimetry\",\"authors\":\"Weiwei Hui, Zhipeng Chen, Jianjun Ma, Xuanshi Meng\",\"doi\":\"10.1007/s00348-025-03960-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an image velocimetry technique that employs supercooled water droplets as seeding particles in an icing wind tunnel. The innovative work involves reconstructing the pressure distribution using the velocity field measured by the water droplets and providing the water collection efficiency at the leading edge of the airfoil using pathlines. The study compares the relative errors of the velocity fields obtained through traditional particle image velocimetry (PIV) and the supercooled water droplet image velocimetry (SWDIV) methods. Results indicate that the velocity root mean square error of SWDIV is <span>\\\\(17.4 \\\\%\\\\)</span> of the incoming flow velocity, and the average angle error was 5.36°. The streamlines derived from the SWDIV method align well with the water droplet trajectories calculated using the Lagrangian approach, providing a more accurate representation of the flow dynamics involving supercooled water droplets of varying sizes. Using this technique, the study quantitatively analyzes the changing characteristics of the airfoil flow field during the anti-icing and de-icing processes under plasma actuation. Key observations include identifying changes in ice configuration, evaluating water droplet collection efficiency at the leading edge, and analyzing the velocity and pressure fields. In the icing wind tunnel experiments, the incoming flow velocity was 15 <span>\\\\(\\\\text {m/s}\\\\)</span>, resulting in a Reynolds number of <span>\\\\(1.8 \\\\times 10^5\\\\)</span>. The liquid water content was 1.0 <span>\\\\(\\\\text {g/m}^3\\\\)</span>, with a median volume diameter of water droplets at 20 <span>\\\\(\\\\upmu \\\\text {m}\\\\)</span> and an average diameter of 6.4 <span>\\\\(\\\\upmu \\\\text {m}\\\\)</span> The static temperature of the incoming flow was − 10 °C. The anti-icing research revealed that plasma actuation prevents icing on the leading edge while maintaining the suction peak. However, runback ice formed downstream of the actuator at low incoming flow velocities, significantly reducing local negative pressure and leading to lift loss. Moreover, the aerodynamic effects generated by plasma reduced the peak water droplet collection coefficient at the leading edge by approximately 0.05. When the airfoil’s leading edge was covered with a 5 mm thick layer of mixed ice, its geometric shape became irregular, and the pressure peak was notably diminished. Upon activation of the plasma actuator, the resulting aerodynamic and thermal coupling melted the surface ice, disrupting the adhesion between the ice and the airfoil surface. This caused the ice to detach and be carried downstream by the airflow, effectively achieving de-icing within approximately 203 s. After ice removal, the negative pressure peak on the upper surface of the airfoil’s leading edge returned to baseline levels, restoring lift to a great degree.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-03960-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03960-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Plasma-based anti-/de-icing: an experimental study utilizing supercooled water droplet image velocimetry
This paper presents an image velocimetry technique that employs supercooled water droplets as seeding particles in an icing wind tunnel. The innovative work involves reconstructing the pressure distribution using the velocity field measured by the water droplets and providing the water collection efficiency at the leading edge of the airfoil using pathlines. The study compares the relative errors of the velocity fields obtained through traditional particle image velocimetry (PIV) and the supercooled water droplet image velocimetry (SWDIV) methods. Results indicate that the velocity root mean square error of SWDIV is \(17.4 \%\) of the incoming flow velocity, and the average angle error was 5.36°. The streamlines derived from the SWDIV method align well with the water droplet trajectories calculated using the Lagrangian approach, providing a more accurate representation of the flow dynamics involving supercooled water droplets of varying sizes. Using this technique, the study quantitatively analyzes the changing characteristics of the airfoil flow field during the anti-icing and de-icing processes under plasma actuation. Key observations include identifying changes in ice configuration, evaluating water droplet collection efficiency at the leading edge, and analyzing the velocity and pressure fields. In the icing wind tunnel experiments, the incoming flow velocity was 15 \(\text {m/s}\), resulting in a Reynolds number of \(1.8 \times 10^5\). The liquid water content was 1.0 \(\text {g/m}^3\), with a median volume diameter of water droplets at 20 \(\upmu \text {m}\) and an average diameter of 6.4 \(\upmu \text {m}\) The static temperature of the incoming flow was − 10 °C. The anti-icing research revealed that plasma actuation prevents icing on the leading edge while maintaining the suction peak. However, runback ice formed downstream of the actuator at low incoming flow velocities, significantly reducing local negative pressure and leading to lift loss. Moreover, the aerodynamic effects generated by plasma reduced the peak water droplet collection coefficient at the leading edge by approximately 0.05. When the airfoil’s leading edge was covered with a 5 mm thick layer of mixed ice, its geometric shape became irregular, and the pressure peak was notably diminished. Upon activation of the plasma actuator, the resulting aerodynamic and thermal coupling melted the surface ice, disrupting the adhesion between the ice and the airfoil surface. This caused the ice to detach and be carried downstream by the airflow, effectively achieving de-icing within approximately 203 s. After ice removal, the negative pressure peak on the upper surface of the airfoil’s leading edge returned to baseline levels, restoring lift to a great degree.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.