Sagar V. Rathod, Vikas U. Magar, S. V. Rajmane, D. R. Sapate, K. M. Jadhav
{"title":"掺镁铁氧体镍薄膜的结构和光学特性","authors":"Sagar V. Rathod, Vikas U. Magar, S. V. Rajmane, D. R. Sapate, K. M. Jadhav","doi":"10.1007/s10854-025-14227-x","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports the growth and deposition of pure and Mg-doped nickel ferrite thin films (Ni<sub>1-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>, <i>x</i> = 0.0,0.1,0.2,0.3,0.4 and 0.5) using spray pyrolysis technique. The thin films were deposited on clean and ultrasonicated pre-heated glass substrate. The structural characterizations were made using X-ray diffraction technique (XRD). All the thin films possess single-phase cubic spinel structure, as evidenced from the XRD analysis. The crystallite size was evaluated using Scherrer formula and found to be vary in the range of 11 nm to 21 nm. The structural parameters like lattice constant (a), unit cell volume (V), X-ray density (d<sub>x</sub>), micro strain (ε) and dislocation density (δ) were obtained and their variation with Mg content is discussed. Lattice constant and unit cell volume increase with Mg content x, X-ray density decreases with Mg content x, and the other structural parameters do not show any systematic trend. The surface morphological observations were carried out using Field emission scanning electron microscopy technique (FE-SEM). The spherical grains with average grain size between 26 and 41 nm were observed. The FTIR spectra recorded at room temperature show two metal oxygen absorption bands within the range 400 cm<sup>−1</sup>–600 cm<sup>−1</sup>. Raman spectra reveal five active modes namely T<sub>2</sub>g (3), Eg, A<sub>1</sub>g characterizing the spinel structure. With Mg doping, the Raman modes slightly shifted. The optical properties were studied using UV–Visible spectroscopy technique. The band gap energy values obtained from Tauc plot vary between 1.61 eV and 1.90 eV. I–V studies reveal the ohmic nature showing high values of resistivity. The obtained results are useful for photocatalytic degradation and gas sensing application.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and optical characterization of Mg-doped nickel ferrite thin films\",\"authors\":\"Sagar V. Rathod, Vikas U. Magar, S. V. Rajmane, D. R. Sapate, K. M. Jadhav\",\"doi\":\"10.1007/s10854-025-14227-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work reports the growth and deposition of pure and Mg-doped nickel ferrite thin films (Ni<sub>1-x</sub>Mg<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>, <i>x</i> = 0.0,0.1,0.2,0.3,0.4 and 0.5) using spray pyrolysis technique. The thin films were deposited on clean and ultrasonicated pre-heated glass substrate. The structural characterizations were made using X-ray diffraction technique (XRD). All the thin films possess single-phase cubic spinel structure, as evidenced from the XRD analysis. The crystallite size was evaluated using Scherrer formula and found to be vary in the range of 11 nm to 21 nm. The structural parameters like lattice constant (a), unit cell volume (V), X-ray density (d<sub>x</sub>), micro strain (ε) and dislocation density (δ) were obtained and their variation with Mg content is discussed. Lattice constant and unit cell volume increase with Mg content x, X-ray density decreases with Mg content x, and the other structural parameters do not show any systematic trend. The surface morphological observations were carried out using Field emission scanning electron microscopy technique (FE-SEM). The spherical grains with average grain size between 26 and 41 nm were observed. The FTIR spectra recorded at room temperature show two metal oxygen absorption bands within the range 400 cm<sup>−1</sup>–600 cm<sup>−1</sup>. Raman spectra reveal five active modes namely T<sub>2</sub>g (3), Eg, A<sub>1</sub>g characterizing the spinel structure. With Mg doping, the Raman modes slightly shifted. The optical properties were studied using UV–Visible spectroscopy technique. The band gap energy values obtained from Tauc plot vary between 1.61 eV and 1.90 eV. I–V studies reveal the ohmic nature showing high values of resistivity. The obtained results are useful for photocatalytic degradation and gas sensing application.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14227-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14227-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Structural and optical characterization of Mg-doped nickel ferrite thin films
This work reports the growth and deposition of pure and Mg-doped nickel ferrite thin films (Ni1-xMgxFe2O4, x = 0.0,0.1,0.2,0.3,0.4 and 0.5) using spray pyrolysis technique. The thin films were deposited on clean and ultrasonicated pre-heated glass substrate. The structural characterizations were made using X-ray diffraction technique (XRD). All the thin films possess single-phase cubic spinel structure, as evidenced from the XRD analysis. The crystallite size was evaluated using Scherrer formula and found to be vary in the range of 11 nm to 21 nm. The structural parameters like lattice constant (a), unit cell volume (V), X-ray density (dx), micro strain (ε) and dislocation density (δ) were obtained and their variation with Mg content is discussed. Lattice constant and unit cell volume increase with Mg content x, X-ray density decreases with Mg content x, and the other structural parameters do not show any systematic trend. The surface morphological observations were carried out using Field emission scanning electron microscopy technique (FE-SEM). The spherical grains with average grain size between 26 and 41 nm were observed. The FTIR spectra recorded at room temperature show two metal oxygen absorption bands within the range 400 cm−1–600 cm−1. Raman spectra reveal five active modes namely T2g (3), Eg, A1g characterizing the spinel structure. With Mg doping, the Raman modes slightly shifted. The optical properties were studied using UV–Visible spectroscopy technique. The band gap energy values obtained from Tauc plot vary between 1.61 eV and 1.90 eV. I–V studies reveal the ohmic nature showing high values of resistivity. The obtained results are useful for photocatalytic degradation and gas sensing application.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.