变形致密物体

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
J. T. Quartuccio, P. H. R. S. Moraes, J. D. V. Arbañil
{"title":"变形致密物体","authors":"J. T. Quartuccio,&nbsp;P. H. R. S. Moraes,&nbsp;J. D. V. Arbañil","doi":"10.1007/s10773-025-05890-1","DOIUrl":null,"url":null,"abstract":"<div><p>We present solutions for deformed compact astrophysical objects. We begin by presenting the derivation of the Tolman-Oppenheimer-Volkoff equations from a parameterized metric that takes into account the deformation of the star expressed in terms of a parameter <span>\\(\\mathcal {D}\\)</span>, which is the ratio between polar and equatorial radii. The stellar structure is solved using the GM1 and MIT bag model equations of state, and the “deformed” Tolman-Oppenheimer-Volkoff equation is numerically integrated for different values of <span>\\(\\mathcal {D}\\)</span>. To simplify the analysis, the dimensionality of the problem is reduced to a single radial component, leveraging a direct relationship between <span>\\(\\mathcal {D}\\)</span> and the polar and equatorial directions. This approach allows us to demonstrate the influence of deformation in the star’s mass in a consistent manner. We show that larger values of <span>\\(\\mathcal {D}&gt;1\\)</span>, describing prolate objects, yield smaller values of mass and radius, while for smaller values of <span>\\(\\mathcal {D}&lt;1\\)</span>, describing oblate objects, larger values for mass and radius are attained. We also show that from the confrontation of our model theoretical predictions with recent observational data on pulsars, it is possible to constrain the values of the parameter <span>\\(\\mathcal {D}\\)</span>. Remarkably, the solutions for the two distinct equations of state, when compared to such observational data, yield the same constraints on the deformation parameter.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformed Compact Objects\",\"authors\":\"J. T. Quartuccio,&nbsp;P. H. R. S. Moraes,&nbsp;J. D. V. Arbañil\",\"doi\":\"10.1007/s10773-025-05890-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present solutions for deformed compact astrophysical objects. We begin by presenting the derivation of the Tolman-Oppenheimer-Volkoff equations from a parameterized metric that takes into account the deformation of the star expressed in terms of a parameter <span>\\\\(\\\\mathcal {D}\\\\)</span>, which is the ratio between polar and equatorial radii. The stellar structure is solved using the GM1 and MIT bag model equations of state, and the “deformed” Tolman-Oppenheimer-Volkoff equation is numerically integrated for different values of <span>\\\\(\\\\mathcal {D}\\\\)</span>. To simplify the analysis, the dimensionality of the problem is reduced to a single radial component, leveraging a direct relationship between <span>\\\\(\\\\mathcal {D}\\\\)</span> and the polar and equatorial directions. This approach allows us to demonstrate the influence of deformation in the star’s mass in a consistent manner. We show that larger values of <span>\\\\(\\\\mathcal {D}&gt;1\\\\)</span>, describing prolate objects, yield smaller values of mass and radius, while for smaller values of <span>\\\\(\\\\mathcal {D}&lt;1\\\\)</span>, describing oblate objects, larger values for mass and radius are attained. We also show that from the confrontation of our model theoretical predictions with recent observational data on pulsars, it is possible to constrain the values of the parameter <span>\\\\(\\\\mathcal {D}\\\\)</span>. Remarkably, the solutions for the two distinct equations of state, when compared to such observational data, yield the same constraints on the deformation parameter.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-05890-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05890-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了变形致密天体物理对象的解决方案。我们首先从一个参数化度量中推导出Tolman-Oppenheimer-Volkoff方程,该度量考虑了以参数\(\mathcal {D}\)表示的恒星变形,该参数是极半径和赤道半径之间的比率。采用GM1和MIT袋模型状态方程求解恒星结构,并对不同\(\mathcal {D}\)值的“变形”Tolman-Oppenheimer-Volkoff方程进行数值积分。为了简化分析,问题的维度被简化为一个单一的径向分量,利用\(\mathcal {D}\)与极地和赤道方向之间的直接关系。这种方法使我们能够以一致的方式证明恒星质量变形的影响。我们表明,较大的\(\mathcal {D}>1\)值(描述长形物体)产生较小的质量和半径值,而较小的\(\mathcal {D}<1\)值(描述扁形物体)获得较大的质量和半径值。我们还表明,从我们的模型理论预测与脉冲星最近的观测数据的对抗中,有可能约束参数\(\mathcal {D}\)的值。值得注意的是,两个不同状态方程的解,当与这些观测数据进行比较时,对变形参数产生相同的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformed Compact Objects

We present solutions for deformed compact astrophysical objects. We begin by presenting the derivation of the Tolman-Oppenheimer-Volkoff equations from a parameterized metric that takes into account the deformation of the star expressed in terms of a parameter \(\mathcal {D}\), which is the ratio between polar and equatorial radii. The stellar structure is solved using the GM1 and MIT bag model equations of state, and the “deformed” Tolman-Oppenheimer-Volkoff equation is numerically integrated for different values of \(\mathcal {D}\). To simplify the analysis, the dimensionality of the problem is reduced to a single radial component, leveraging a direct relationship between \(\mathcal {D}\) and the polar and equatorial directions. This approach allows us to demonstrate the influence of deformation in the star’s mass in a consistent manner. We show that larger values of \(\mathcal {D}>1\), describing prolate objects, yield smaller values of mass and radius, while for smaller values of \(\mathcal {D}<1\), describing oblate objects, larger values for mass and radius are attained. We also show that from the confrontation of our model theoretical predictions with recent observational data on pulsars, it is possible to constrain the values of the parameter \(\mathcal {D}\). Remarkably, the solutions for the two distinct equations of state, when compared to such observational data, yield the same constraints on the deformation parameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信