超临界相分支布朗运动与随机能量模型:重叠分布和温度敏感性

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Benjamin Bonnefont, Michel Pain, Olivier Zindy
{"title":"超临界相分支布朗运动与随机能量模型:重叠分布和温度敏感性","authors":"Benjamin Bonnefont,&nbsp;Michel Pain,&nbsp;Olivier Zindy","doi":"10.1007/s10955-025-03394-0","DOIUrl":null,"url":null,"abstract":"<div><p>In comparison with Derrida’s REM, we investigate the influence of the so-called decoration processes arising in the limiting extremal processes of numerous log-correlated Gaussian fields. In particular, we focus on the branching Brownian motion and two specific quantities from statistical physics in the vicinity of the critical temperature. The first one is the two-temperature overlap, whose behavior at criticality is smoothened by the decoration process—unlike the one-temperature overlap which is identical—and the second one is the temperature susceptibility, as introduced by Sales and Bouchaud, which is strictly larger in the presence of decorations and diverges, close to the critical temperature, at the same speed as for the REM but with a different multiplicative constant. We also study some general decorated cases in order to highlight the fact that the BBM has a critical behavior in some sense to be made precise.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching Brownian Motion Versus Random Energy Model in the Supercritical Phase: Overlap Distribution and Temperature Susceptibility\",\"authors\":\"Benjamin Bonnefont,&nbsp;Michel Pain,&nbsp;Olivier Zindy\",\"doi\":\"10.1007/s10955-025-03394-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In comparison with Derrida’s REM, we investigate the influence of the so-called decoration processes arising in the limiting extremal processes of numerous log-correlated Gaussian fields. In particular, we focus on the branching Brownian motion and two specific quantities from statistical physics in the vicinity of the critical temperature. The first one is the two-temperature overlap, whose behavior at criticality is smoothened by the decoration process—unlike the one-temperature overlap which is identical—and the second one is the temperature susceptibility, as introduced by Sales and Bouchaud, which is strictly larger in the presence of decorations and diverges, close to the critical temperature, at the same speed as for the REM but with a different multiplicative constant. We also study some general decorated cases in order to highlight the fact that the BBM has a critical behavior in some sense to be made precise.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03394-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03394-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

与德里达的REM相比,我们研究了所谓的装饰过程的影响,这些过程出现在许多对数相关高斯场的极限极值过程中。我们特别关注临界温度附近的分支布朗运动和统计物理中的两个特定量。第一个是双温度重叠,它在临界时的行为被装饰过程平滑了-不像温度重叠一样-第二个是温度敏感性,正如Sales和Bouchaud所介绍的那样,在装饰存在的情况下,温度敏感性严格地更大,并以与REM相同的速度发散,接近临界温度,但具有不同的乘法常数。我们还研究了一些一般的装饰案例,以强调BBM在某种意义上具有精确的临界行为这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branching Brownian Motion Versus Random Energy Model in the Supercritical Phase: Overlap Distribution and Temperature Susceptibility

In comparison with Derrida’s REM, we investigate the influence of the so-called decoration processes arising in the limiting extremal processes of numerous log-correlated Gaussian fields. In particular, we focus on the branching Brownian motion and two specific quantities from statistical physics in the vicinity of the critical temperature. The first one is the two-temperature overlap, whose behavior at criticality is smoothened by the decoration process—unlike the one-temperature overlap which is identical—and the second one is the temperature susceptibility, as introduced by Sales and Bouchaud, which is strictly larger in the presence of decorations and diverges, close to the critical temperature, at the same speed as for the REM but with a different multiplicative constant. We also study some general decorated cases in order to highlight the fact that the BBM has a critical behavior in some sense to be made precise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信