Wenda Zhang, Yuncong Shang, Jinjie Wang, Hongbin Liu, Hong Xu
{"title":"热处理对热压烧结SiCp-Cf/ZL109铝基复合材料组织和性能的影响","authors":"Wenda Zhang, Yuncong Shang, Jinjie Wang, Hongbin Liu, Hong Xu","doi":"10.1007/s42114-024-01062-7","DOIUrl":null,"url":null,"abstract":"<div><p>The hot press sintering and heat treatment processes each play a crucial role in influencing the interface between the fibers and the matrix alloy; therefore, this work evaluated the interfacial evolution between carbon fibers and the matrix alloy in SiC<sub>p</sub>-C<sub>f</sub>/Al composites under sintered and heat-treated conditions. 5SiC<sub>p</sub>-5C<sub>f</sub>/ZL109 hybrid-reinforced aluminum matrix composites were prepared by hot pressing sintering and T6 heat treatment to investigate their microstructure and properties. The analysis revealed that the SiC<sub>p</sub> and C<sub>f</sub> were uniformly distributed in the matrix alloy, and after heat treatment, Ni diffused and the Al<sub>3</sub>Ni phase on the surface of the carbon fiber transformed into a jagged one. The mechanical interlock between the carbon fiber and the matrix alloy was formed by the jagged Al<sub>3</sub>Ni phase, which improved the interface bonding between the carbon fiber and the matrix alloy. The yield strength and the tensile strength of the heat-treated 5SiC<sub>p</sub>-5C<sub>f</sub>/ZL109 hybrid-reinforced aluminum matrix composites reached 324 MPa and 343 MPa, respectively, 93.3% and 55.5% higher than those of the matrix alloy.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of heat treatment on microstructure and properties of SiCp-Cf/ZL109 aluminum matrix composites prepared by hot pressing sintering\",\"authors\":\"Wenda Zhang, Yuncong Shang, Jinjie Wang, Hongbin Liu, Hong Xu\",\"doi\":\"10.1007/s42114-024-01062-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The hot press sintering and heat treatment processes each play a crucial role in influencing the interface between the fibers and the matrix alloy; therefore, this work evaluated the interfacial evolution between carbon fibers and the matrix alloy in SiC<sub>p</sub>-C<sub>f</sub>/Al composites under sintered and heat-treated conditions. 5SiC<sub>p</sub>-5C<sub>f</sub>/ZL109 hybrid-reinforced aluminum matrix composites were prepared by hot pressing sintering and T6 heat treatment to investigate their microstructure and properties. The analysis revealed that the SiC<sub>p</sub> and C<sub>f</sub> were uniformly distributed in the matrix alloy, and after heat treatment, Ni diffused and the Al<sub>3</sub>Ni phase on the surface of the carbon fiber transformed into a jagged one. The mechanical interlock between the carbon fiber and the matrix alloy was formed by the jagged Al<sub>3</sub>Ni phase, which improved the interface bonding between the carbon fiber and the matrix alloy. The yield strength and the tensile strength of the heat-treated 5SiC<sub>p</sub>-5C<sub>f</sub>/ZL109 hybrid-reinforced aluminum matrix composites reached 324 MPa and 343 MPa, respectively, 93.3% and 55.5% higher than those of the matrix alloy.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01062-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01062-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of heat treatment on microstructure and properties of SiCp-Cf/ZL109 aluminum matrix composites prepared by hot pressing sintering
The hot press sintering and heat treatment processes each play a crucial role in influencing the interface between the fibers and the matrix alloy; therefore, this work evaluated the interfacial evolution between carbon fibers and the matrix alloy in SiCp-Cf/Al composites under sintered and heat-treated conditions. 5SiCp-5Cf/ZL109 hybrid-reinforced aluminum matrix composites were prepared by hot pressing sintering and T6 heat treatment to investigate their microstructure and properties. The analysis revealed that the SiCp and Cf were uniformly distributed in the matrix alloy, and after heat treatment, Ni diffused and the Al3Ni phase on the surface of the carbon fiber transformed into a jagged one. The mechanical interlock between the carbon fiber and the matrix alloy was formed by the jagged Al3Ni phase, which improved the interface bonding between the carbon fiber and the matrix alloy. The yield strength and the tensile strength of the heat-treated 5SiCp-5Cf/ZL109 hybrid-reinforced aluminum matrix composites reached 324 MPa and 343 MPa, respectively, 93.3% and 55.5% higher than those of the matrix alloy.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.