基于弹性体的智能传感材料和结构的最新发展

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yunfei Yu, Xiaojian Liao, Wei Feng
{"title":"基于弹性体的智能传感材料和结构的最新发展","authors":"Yunfei Yu,&nbsp;Xiaojian Liao,&nbsp;Wei Feng","doi":"10.1007/s42114-024-01168-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid advancement of wearable smart devices, there is an increasing demand for intelligent flexible strain sensors. However, to date, traditional metallic or inorganic semiconductor strain sensors exhibit poor stretchability and sensitivity, limiting their applications in this field. Flexible elastomer-based smart sensing materials (FESSM) offer several advantages, including lightweight design and quantifiable production capabilities. These FESSM have garnered significant attention for their potential applications in robotic electronic skins and intelligent homecare systems. The materials and structural design of FESSM are continually being optimized to facilitate the development of high-performance flexible electronics. This article reviews the latest advancements in the design concepts of materials and structures for FESSM. It examines the preparation methods for various elastic substrates, such as polyurethane fibers and polydimethylsiloxane films, and explores the design of their micro-nano structures, as well as the appropriate use of conductive fillers. This review aims to provide insights and strategies for the design of high-performance FESSM.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent development of elastomer-based smart sensing materials and structures\",\"authors\":\"Yunfei Yu,&nbsp;Xiaojian Liao,&nbsp;Wei Feng\",\"doi\":\"10.1007/s42114-024-01168-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid advancement of wearable smart devices, there is an increasing demand for intelligent flexible strain sensors. However, to date, traditional metallic or inorganic semiconductor strain sensors exhibit poor stretchability and sensitivity, limiting their applications in this field. Flexible elastomer-based smart sensing materials (FESSM) offer several advantages, including lightweight design and quantifiable production capabilities. These FESSM have garnered significant attention for their potential applications in robotic electronic skins and intelligent homecare systems. The materials and structural design of FESSM are continually being optimized to facilitate the development of high-performance flexible electronics. This article reviews the latest advancements in the design concepts of materials and structures for FESSM. It examines the preparation methods for various elastic substrates, such as polyurethane fibers and polydimethylsiloxane films, and explores the design of their micro-nano structures, as well as the appropriate use of conductive fillers. This review aims to provide insights and strategies for the design of high-performance FESSM.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01168-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01168-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着可穿戴智能设备的快速发展,对智能柔性应变传感器的需求越来越大。然而,迄今为止,传统的金属或无机半导体应变传感器表现出较差的拉伸性和灵敏度,限制了它们在该领域的应用。基于柔性弹性体的智能传感材料(FESSM)具有多种优势,包括轻量化设计和可量化生产能力。这些FESSM因其在机器人电子皮肤和智能家庭护理系统中的潜在应用而引起了极大的关注。FESSM的材料和结构设计不断优化,以促进高性能柔性电子的发展。本文综述了FESSM材料和结构设计理念的最新进展。研究了聚氨酯纤维和聚二甲基硅氧烷薄膜等各种弹性基材的制备方法,并探讨了其微纳米结构的设计,以及导电填料的适当使用。本文旨在为高性能FESSM的设计提供见解和策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent development of elastomer-based smart sensing materials and structures

With the rapid advancement of wearable smart devices, there is an increasing demand for intelligent flexible strain sensors. However, to date, traditional metallic or inorganic semiconductor strain sensors exhibit poor stretchability and sensitivity, limiting their applications in this field. Flexible elastomer-based smart sensing materials (FESSM) offer several advantages, including lightweight design and quantifiable production capabilities. These FESSM have garnered significant attention for their potential applications in robotic electronic skins and intelligent homecare systems. The materials and structural design of FESSM are continually being optimized to facilitate the development of high-performance flexible electronics. This article reviews the latest advancements in the design concepts of materials and structures for FESSM. It examines the preparation methods for various elastic substrates, such as polyurethane fibers and polydimethylsiloxane films, and explores the design of their micro-nano structures, as well as the appropriate use of conductive fillers. This review aims to provide insights and strategies for the design of high-performance FESSM.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信