300 TeV γ射线中CTA1与LHAASO复合信噪比的深入研究

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
LHAASO Collaboration, Zhen Cao, F. Aharonian,  Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai,  Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X. Y. Huang, Y. Huang, Y. Y. Huang, X. L. Ji, H. Y. Jia, K. Jia, H. B. Jiang, K. Jiang, X. W. Jiang, Z. J. Jiang, M. Jin, M. M. Kang, I. Karpikov, D. Khangulyan, D. Kuleshov, K. Kurinov, B. B. Li, C. M. Li, Cheng Li, Cong Li, D. Li, F. Li, H. B. Li, H. C. Li, Jian Li, Jie Li, K. Li, S. D. Li, W. L. Li, W. L. Li, X. R. Li, Xin Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, D. B. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Q. Luo, Y. Luo, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, Z. Min, W. Mitthumsiri, H. J. Mu, Y. C. Nan, A. Neronov, K. C. Y. Ng, L. J. Ou, P. Pattarakijwanich, Z. Y. Pei, J. C. Qi, M. Y. Qi, B. Q. Qiao, J. J. Qin, A. Raza, D. Ruffolo, A. Saiz, M. Saeed, D. Semikoz, L. Shao, O. Shchegolev, X. D. Sheng, F. W. Shu, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, D. X. Sun, Q. N. Sun, X. N. Sun, Z. B. Sun, J. Takata, P. H. T. Tam, Q. W. Tang, R. Tang, Z. B. Tang, W. W. Tian, L. H. Wan, C. Wang, C. B. Wang, G. W. Wang, H. G. Wang, H. H. Wang, J. C. Wang, Kai Wang, Kai Wang, L. P. Wang, L. Y. Wang, P. H. Wang, R. Wang, W. Wang, X. G. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, Q. W. Wu, S. Wu, X. F. Wu, Y. S. Wu, S. Q. Xi, J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, Y. L. Xin, Y. Xing, D. R. Xiong, Z. Xiong, D. L. Xu, R. F. Xu, R. X. Xu, W. L. Xu, L. Xue, D. H. Yan, J. Z. Yan, T. Yan, C. W. Yang, C. Y. Yang, F. Yang, F. F. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, W. X. Yang, Y. H. Yao, Z. G. Yao, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. Yue, H. D. Zeng, T. X. Zeng, W. Zeng, M. Zha, B. B. Zhang, F. Zhang, H. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, Li Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. B. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, X. H. Zhao, F. Zheng, W. J. Zhong, B. Zhou, H. Zhou, J. N. Zhou, M. Zhou, P. Zhou, R. Zhou, X. X. Zhou, X. X. Zhou, B. Y. Zhu, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, Y. C. Zou, X. Zuo, B. Li
{"title":"300 TeV γ射线中CTA1与LHAASO复合信噪比的深入研究","authors":"LHAASO Collaboration,&nbsp;Zhen Cao,&nbsp;F. Aharonian,&nbsp; Axikegu,&nbsp;Y. X. Bai,&nbsp;Y. W. Bao,&nbsp;D. Bastieri,&nbsp;X. J. Bi,&nbsp;Y. J. Bi,&nbsp;W. Bian,&nbsp;A. V. Bukevich,&nbsp;Q. Cao,&nbsp;W. Y. Cao,&nbsp;Zhe Cao,&nbsp;J. Chang,&nbsp;J. F. Chang,&nbsp;A. M. Chen,&nbsp;E. S. Chen,&nbsp;H. X. Chen,&nbsp;Liang Chen,&nbsp;Lin Chen,&nbsp;Long Chen,&nbsp;M. J. Chen,&nbsp;M. L. Chen,&nbsp;Q. H. Chen,&nbsp;S. Chen,&nbsp;S. H. Chen,&nbsp;S. Z. Chen,&nbsp;T. L. Chen,&nbsp;Y. Chen,&nbsp;N. Cheng,&nbsp;Y. D. Cheng,&nbsp;M. C. Chu,&nbsp;M. Y. Cui,&nbsp;S. W. Cui,&nbsp;X. H. Cui,&nbsp;Y. D. Cui,&nbsp;B. Z. Dai,&nbsp;H. L. Dai,&nbsp;Z. G. Dai,&nbsp; Danzengluobu,&nbsp;X. Q. Dong,&nbsp;K. K. Duan,&nbsp;J. H. Fan,&nbsp;Y. Z. Fan,&nbsp;J. Fang,&nbsp;J. H. Fang,&nbsp;K. Fang,&nbsp;C. F. Feng,&nbsp;H. Feng,&nbsp;L. Feng,&nbsp;S. H. Feng,&nbsp;X. T. Feng,&nbsp;Y. Feng,&nbsp;Y. L. Feng,&nbsp;S. Gabici,&nbsp;B. Gao,&nbsp;C. D. Gao,&nbsp;Q. Gao,&nbsp;W. Gao,&nbsp;W. K. Gao,&nbsp;M. M. Ge,&nbsp;T. T. Ge,&nbsp;L. S. Geng,&nbsp;G. Giacinti,&nbsp;G. H. Gong,&nbsp;Q. B. Gou,&nbsp;M. H. Gu,&nbsp;F. L. Guo,&nbsp;J. Guo,&nbsp;X. L. Guo,&nbsp;Y. Q. Guo,&nbsp;Y. Y. Guo,&nbsp;Y. A. Han,&nbsp;O. A. Hannuksela,&nbsp;M. Hasan,&nbsp;H. H. He,&nbsp;H. N. He,&nbsp;J. Y. He,&nbsp;Y. He,&nbsp;Y. K. Hor,&nbsp;B. W. Hou,&nbsp;C. Hou,&nbsp;X. Hou,&nbsp;H. B. Hu,&nbsp;Q. Hu,&nbsp;S. C. Hu,&nbsp;C. Huang,&nbsp;D. H. Huang,&nbsp;T. Q. Huang,&nbsp;W. J. Huang,&nbsp;X. T. Huang,&nbsp;X. Y. Huang,&nbsp;Y. Huang,&nbsp;Y. Y. Huang,&nbsp;X. L. Ji,&nbsp;H. Y. Jia,&nbsp;K. Jia,&nbsp;H. B. Jiang,&nbsp;K. Jiang,&nbsp;X. W. Jiang,&nbsp;Z. J. Jiang,&nbsp;M. Jin,&nbsp;M. M. Kang,&nbsp;I. Karpikov,&nbsp;D. Khangulyan,&nbsp;D. Kuleshov,&nbsp;K. Kurinov,&nbsp;B. B. Li,&nbsp;C. M. Li,&nbsp;Cheng Li,&nbsp;Cong Li,&nbsp;D. Li,&nbsp;F. Li,&nbsp;H. B. Li,&nbsp;H. C. Li,&nbsp;Jian Li,&nbsp;Jie Li,&nbsp;K. Li,&nbsp;S. D. Li,&nbsp;W. L. Li,&nbsp;W. L. Li,&nbsp;X. R. Li,&nbsp;Xin Li,&nbsp;Y. Z. Li,&nbsp;Zhe Li,&nbsp;Zhuo Li,&nbsp;E. W. Liang,&nbsp;Y. F. Liang,&nbsp;S. J. Lin,&nbsp;B. Liu,&nbsp;C. Liu,&nbsp;D. Liu,&nbsp;D. B. Liu,&nbsp;H. Liu,&nbsp;H. D. Liu,&nbsp;J. Liu,&nbsp;J. L. Liu,&nbsp;M. Y. Liu,&nbsp;R. Y. Liu,&nbsp;S. M. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. N. Liu,&nbsp;Q. Luo,&nbsp;Y. Luo,&nbsp;H. K. Lv,&nbsp;B. Q. Ma,&nbsp;L. L. Ma,&nbsp;X. H. Ma,&nbsp;J. R. Mao,&nbsp;Z. Min,&nbsp;W. Mitthumsiri,&nbsp;H. J. Mu,&nbsp;Y. C. Nan,&nbsp;A. Neronov,&nbsp;K. C. Y. Ng,&nbsp;L. J. Ou,&nbsp;P. Pattarakijwanich,&nbsp;Z. Y. Pei,&nbsp;J. C. Qi,&nbsp;M. Y. Qi,&nbsp;B. Q. Qiao,&nbsp;J. J. Qin,&nbsp;A. Raza,&nbsp;D. Ruffolo,&nbsp;A. Saiz,&nbsp;M. Saeed,&nbsp;D. Semikoz,&nbsp;L. Shao,&nbsp;O. Shchegolev,&nbsp;X. D. Sheng,&nbsp;F. W. Shu,&nbsp;H. C. Song,&nbsp;Yu. V. Stenkin,&nbsp;V. Stepanov,&nbsp;Y. Su,&nbsp;D. X. Sun,&nbsp;Q. N. Sun,&nbsp;X. N. Sun,&nbsp;Z. B. Sun,&nbsp;J. Takata,&nbsp;P. H. T. Tam,&nbsp;Q. W. Tang,&nbsp;R. Tang,&nbsp;Z. B. Tang,&nbsp;W. W. Tian,&nbsp;L. H. Wan,&nbsp;C. Wang,&nbsp;C. B. Wang,&nbsp;G. W. Wang,&nbsp;H. G. Wang,&nbsp;H. H. Wang,&nbsp;J. C. Wang,&nbsp;Kai Wang,&nbsp;Kai Wang,&nbsp;L. P. Wang,&nbsp;L. Y. Wang,&nbsp;P. H. Wang,&nbsp;R. Wang,&nbsp;W. Wang,&nbsp;X. G. Wang,&nbsp;X. Y. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. J. Wang,&nbsp;Z. H. Wang,&nbsp;Z. X. Wang,&nbsp;Zhen Wang,&nbsp;Zheng Wang,&nbsp;D. M. Wei,&nbsp;J. J. Wei,&nbsp;Y. J. Wei,&nbsp;T. Wen,&nbsp;C. Y. Wu,&nbsp;H. R. Wu,&nbsp;Q. W. Wu,&nbsp;S. Wu,&nbsp;X. F. Wu,&nbsp;Y. S. Wu,&nbsp;S. Q. Xi,&nbsp;J. Xia,&nbsp;G. M. Xiang,&nbsp;D. X. Xiao,&nbsp;G. Xiao,&nbsp;Y. L. Xin,&nbsp;Y. Xing,&nbsp;D. R. Xiong,&nbsp;Z. Xiong,&nbsp;D. L. Xu,&nbsp;R. F. Xu,&nbsp;R. X. Xu,&nbsp;W. L. Xu,&nbsp;L. Xue,&nbsp;D. H. Yan,&nbsp;J. Z. Yan,&nbsp;T. Yan,&nbsp;C. W. Yang,&nbsp;C. Y. Yang,&nbsp;F. Yang,&nbsp;F. F. Yang,&nbsp;L. L. Yang,&nbsp;M. J. Yang,&nbsp;R. Z. Yang,&nbsp;W. X. Yang,&nbsp;Y. H. Yao,&nbsp;Z. G. Yao,&nbsp;L. Q. Yin,&nbsp;N. Yin,&nbsp;X. H. You,&nbsp;Z. Y. You,&nbsp;Y. H. Yu,&nbsp;Q. Yuan,&nbsp;H. Yue,&nbsp;H. D. Zeng,&nbsp;T. X. Zeng,&nbsp;W. Zeng,&nbsp;M. Zha,&nbsp;B. B. Zhang,&nbsp;F. Zhang,&nbsp;H. Zhang,&nbsp;H. M. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. L. Zhang,&nbsp;Li Zhang,&nbsp;P. F. Zhang,&nbsp;P. P. Zhang,&nbsp;R. Zhang,&nbsp;S. B. Zhang,&nbsp;S. R. Zhang,&nbsp;S. S. Zhang,&nbsp;X. Zhang,&nbsp;X. P. Zhang,&nbsp;Y. F. Zhang,&nbsp;Yi Zhang,&nbsp;Yong Zhang,&nbsp;B. Zhao,&nbsp;J. Zhao,&nbsp;L. Zhao,&nbsp;L. Z. Zhao,&nbsp;S. P. Zhao,&nbsp;X. H. Zhao,&nbsp;F. Zheng,&nbsp;W. J. Zhong,&nbsp;B. Zhou,&nbsp;H. Zhou,&nbsp;J. N. Zhou,&nbsp;M. Zhou,&nbsp;P. Zhou,&nbsp;R. Zhou,&nbsp;X. X. Zhou,&nbsp;X. X. Zhou,&nbsp;B. Y. Zhu,&nbsp;C. G. Zhu,&nbsp;F. R. Zhu,&nbsp;H. Zhu,&nbsp;K. J. Zhu,&nbsp;Y. C. Zou,&nbsp;X. Zuo,&nbsp;B. Li","doi":"10.1007/s11433-024-2479-4","DOIUrl":null,"url":null,"abstract":"<div><p>The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude <i>b</i> ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21<i>σ</i> and 17<i>σ</i> at 8–100 TeV and &gt;100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function <span>\\(dN/dE=(42.4\\pm 4.1)({E\\over 20\\ \\text{TeV}})^{-2.31\\pm 0.11}\\ \\text{exp}(-{E\\over 110\\pm 25\\ \\text{TeV}})\\)</span> TeV<sup>−1</sup> cm<sup>−2</sup> s<sup>−1</sup> in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum <span>\\(dN_{e}/dE_{e} \\propto \\ ({E_{e} \\over 100\\ \\text{TeV}})^{-3.13\\pm 0.16}\\ \\text{exp}[({-E_{e}\\over373\\pm 70\\ \\text{TeV}})^{2}]\\)</span> at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the <i>γ</i>-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 7","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV\",\"authors\":\"LHAASO Collaboration,&nbsp;Zhen Cao,&nbsp;F. Aharonian,&nbsp; Axikegu,&nbsp;Y. X. Bai,&nbsp;Y. W. Bao,&nbsp;D. Bastieri,&nbsp;X. J. Bi,&nbsp;Y. J. Bi,&nbsp;W. Bian,&nbsp;A. V. Bukevich,&nbsp;Q. Cao,&nbsp;W. Y. Cao,&nbsp;Zhe Cao,&nbsp;J. Chang,&nbsp;J. F. Chang,&nbsp;A. M. Chen,&nbsp;E. S. Chen,&nbsp;H. X. Chen,&nbsp;Liang Chen,&nbsp;Lin Chen,&nbsp;Long Chen,&nbsp;M. J. Chen,&nbsp;M. L. Chen,&nbsp;Q. H. Chen,&nbsp;S. Chen,&nbsp;S. H. Chen,&nbsp;S. Z. Chen,&nbsp;T. L. Chen,&nbsp;Y. Chen,&nbsp;N. Cheng,&nbsp;Y. D. Cheng,&nbsp;M. C. Chu,&nbsp;M. Y. Cui,&nbsp;S. W. Cui,&nbsp;X. H. Cui,&nbsp;Y. D. Cui,&nbsp;B. Z. Dai,&nbsp;H. L. Dai,&nbsp;Z. G. Dai,&nbsp; Danzengluobu,&nbsp;X. Q. Dong,&nbsp;K. K. Duan,&nbsp;J. H. Fan,&nbsp;Y. Z. Fan,&nbsp;J. Fang,&nbsp;J. H. Fang,&nbsp;K. Fang,&nbsp;C. F. Feng,&nbsp;H. Feng,&nbsp;L. Feng,&nbsp;S. H. Feng,&nbsp;X. T. Feng,&nbsp;Y. Feng,&nbsp;Y. L. Feng,&nbsp;S. Gabici,&nbsp;B. Gao,&nbsp;C. D. Gao,&nbsp;Q. Gao,&nbsp;W. Gao,&nbsp;W. K. Gao,&nbsp;M. M. Ge,&nbsp;T. T. Ge,&nbsp;L. S. Geng,&nbsp;G. Giacinti,&nbsp;G. H. Gong,&nbsp;Q. B. Gou,&nbsp;M. H. Gu,&nbsp;F. L. Guo,&nbsp;J. Guo,&nbsp;X. L. Guo,&nbsp;Y. Q. Guo,&nbsp;Y. Y. Guo,&nbsp;Y. A. Han,&nbsp;O. A. Hannuksela,&nbsp;M. Hasan,&nbsp;H. H. He,&nbsp;H. N. He,&nbsp;J. Y. He,&nbsp;Y. He,&nbsp;Y. K. Hor,&nbsp;B. W. Hou,&nbsp;C. Hou,&nbsp;X. Hou,&nbsp;H. B. Hu,&nbsp;Q. Hu,&nbsp;S. C. Hu,&nbsp;C. Huang,&nbsp;D. H. Huang,&nbsp;T. Q. Huang,&nbsp;W. J. Huang,&nbsp;X. T. Huang,&nbsp;X. Y. Huang,&nbsp;Y. Huang,&nbsp;Y. Y. Huang,&nbsp;X. L. Ji,&nbsp;H. Y. Jia,&nbsp;K. Jia,&nbsp;H. B. Jiang,&nbsp;K. Jiang,&nbsp;X. W. Jiang,&nbsp;Z. J. Jiang,&nbsp;M. Jin,&nbsp;M. M. Kang,&nbsp;I. Karpikov,&nbsp;D. Khangulyan,&nbsp;D. Kuleshov,&nbsp;K. Kurinov,&nbsp;B. B. Li,&nbsp;C. M. Li,&nbsp;Cheng Li,&nbsp;Cong Li,&nbsp;D. Li,&nbsp;F. Li,&nbsp;H. B. Li,&nbsp;H. C. Li,&nbsp;Jian Li,&nbsp;Jie Li,&nbsp;K. Li,&nbsp;S. D. Li,&nbsp;W. L. Li,&nbsp;W. L. Li,&nbsp;X. R. Li,&nbsp;Xin Li,&nbsp;Y. Z. Li,&nbsp;Zhe Li,&nbsp;Zhuo Li,&nbsp;E. W. Liang,&nbsp;Y. F. Liang,&nbsp;S. J. Lin,&nbsp;B. Liu,&nbsp;C. Liu,&nbsp;D. Liu,&nbsp;D. B. Liu,&nbsp;H. Liu,&nbsp;H. D. Liu,&nbsp;J. Liu,&nbsp;J. L. Liu,&nbsp;M. Y. Liu,&nbsp;R. Y. Liu,&nbsp;S. M. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. N. Liu,&nbsp;Q. Luo,&nbsp;Y. Luo,&nbsp;H. K. Lv,&nbsp;B. Q. Ma,&nbsp;L. L. Ma,&nbsp;X. H. Ma,&nbsp;J. R. Mao,&nbsp;Z. Min,&nbsp;W. Mitthumsiri,&nbsp;H. J. Mu,&nbsp;Y. C. Nan,&nbsp;A. Neronov,&nbsp;K. C. Y. Ng,&nbsp;L. J. Ou,&nbsp;P. Pattarakijwanich,&nbsp;Z. Y. Pei,&nbsp;J. C. Qi,&nbsp;M. Y. Qi,&nbsp;B. Q. Qiao,&nbsp;J. J. Qin,&nbsp;A. Raza,&nbsp;D. Ruffolo,&nbsp;A. Saiz,&nbsp;M. Saeed,&nbsp;D. Semikoz,&nbsp;L. Shao,&nbsp;O. Shchegolev,&nbsp;X. D. Sheng,&nbsp;F. W. Shu,&nbsp;H. C. Song,&nbsp;Yu. V. Stenkin,&nbsp;V. Stepanov,&nbsp;Y. Su,&nbsp;D. X. Sun,&nbsp;Q. N. Sun,&nbsp;X. N. Sun,&nbsp;Z. B. Sun,&nbsp;J. Takata,&nbsp;P. H. T. Tam,&nbsp;Q. W. Tang,&nbsp;R. Tang,&nbsp;Z. B. Tang,&nbsp;W. W. Tian,&nbsp;L. H. Wan,&nbsp;C. Wang,&nbsp;C. B. Wang,&nbsp;G. W. Wang,&nbsp;H. G. Wang,&nbsp;H. H. Wang,&nbsp;J. C. Wang,&nbsp;Kai Wang,&nbsp;Kai Wang,&nbsp;L. P. Wang,&nbsp;L. Y. Wang,&nbsp;P. H. Wang,&nbsp;R. Wang,&nbsp;W. Wang,&nbsp;X. G. Wang,&nbsp;X. Y. Wang,&nbsp;Y. Wang,&nbsp;Y. D. Wang,&nbsp;Y. J. Wang,&nbsp;Z. H. Wang,&nbsp;Z. X. Wang,&nbsp;Zhen Wang,&nbsp;Zheng Wang,&nbsp;D. M. Wei,&nbsp;J. J. Wei,&nbsp;Y. J. Wei,&nbsp;T. Wen,&nbsp;C. Y. Wu,&nbsp;H. R. Wu,&nbsp;Q. W. Wu,&nbsp;S. Wu,&nbsp;X. F. Wu,&nbsp;Y. S. Wu,&nbsp;S. Q. Xi,&nbsp;J. Xia,&nbsp;G. M. Xiang,&nbsp;D. X. Xiao,&nbsp;G. Xiao,&nbsp;Y. L. Xin,&nbsp;Y. Xing,&nbsp;D. R. Xiong,&nbsp;Z. Xiong,&nbsp;D. L. Xu,&nbsp;R. F. Xu,&nbsp;R. X. Xu,&nbsp;W. L. Xu,&nbsp;L. Xue,&nbsp;D. H. Yan,&nbsp;J. Z. Yan,&nbsp;T. Yan,&nbsp;C. W. Yang,&nbsp;C. Y. Yang,&nbsp;F. Yang,&nbsp;F. F. Yang,&nbsp;L. L. Yang,&nbsp;M. J. Yang,&nbsp;R. Z. Yang,&nbsp;W. X. Yang,&nbsp;Y. H. Yao,&nbsp;Z. G. Yao,&nbsp;L. Q. Yin,&nbsp;N. Yin,&nbsp;X. H. You,&nbsp;Z. Y. You,&nbsp;Y. H. Yu,&nbsp;Q. Yuan,&nbsp;H. Yue,&nbsp;H. D. Zeng,&nbsp;T. X. Zeng,&nbsp;W. Zeng,&nbsp;M. Zha,&nbsp;B. B. Zhang,&nbsp;F. Zhang,&nbsp;H. Zhang,&nbsp;H. M. Zhang,&nbsp;H. Y. Zhang,&nbsp;J. L. Zhang,&nbsp;Li Zhang,&nbsp;P. F. Zhang,&nbsp;P. P. Zhang,&nbsp;R. Zhang,&nbsp;S. B. Zhang,&nbsp;S. R. Zhang,&nbsp;S. S. Zhang,&nbsp;X. Zhang,&nbsp;X. P. Zhang,&nbsp;Y. F. Zhang,&nbsp;Yi Zhang,&nbsp;Yong Zhang,&nbsp;B. Zhao,&nbsp;J. Zhao,&nbsp;L. Zhao,&nbsp;L. Z. Zhao,&nbsp;S. P. Zhao,&nbsp;X. H. Zhao,&nbsp;F. Zheng,&nbsp;W. J. Zhong,&nbsp;B. Zhou,&nbsp;H. Zhou,&nbsp;J. N. Zhou,&nbsp;M. Zhou,&nbsp;P. Zhou,&nbsp;R. Zhou,&nbsp;X. X. Zhou,&nbsp;X. X. Zhou,&nbsp;B. Y. Zhu,&nbsp;C. G. Zhu,&nbsp;F. R. Zhu,&nbsp;H. Zhu,&nbsp;K. J. Zhu,&nbsp;Y. C. Zou,&nbsp;X. Zuo,&nbsp;B. Li\",\"doi\":\"10.1007/s11433-024-2479-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude <i>b</i> ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21<i>σ</i> and 17<i>σ</i> at 8–100 TeV and &gt;100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function <span>\\\\(dN/dE=(42.4\\\\pm 4.1)({E\\\\over 20\\\\ \\\\text{TeV}})^{-2.31\\\\pm 0.11}\\\\ \\\\text{exp}(-{E\\\\over 110\\\\pm 25\\\\ \\\\text{TeV}})\\\\)</span> TeV<sup>−1</sup> cm<sup>−2</sup> s<sup>−1</sup> in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum <span>\\\\(dN_{e}/dE_{e} \\\\propto \\\\ ({E_{e} \\\\over 100\\\\ \\\\text{TeV}})^{-3.13\\\\pm 0.16}\\\\ \\\\text{exp}[({-E_{e}\\\\over373\\\\pm 70\\\\ \\\\text{TeV}})^{2}]\\\\)</span> at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the <i>γ</i>-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 7\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2479-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2479-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超高能(UHE)伽马射线源1LHAASO J0007+7303u与复合信噪比CTA1的位置相关,CTA1位于银河系高纬度b≈10.5°。这为在UHE上空间解析脉冲星风星云(PWN)和超新星遗迹(SNR)的组成提供了难得的机会。本文使用2019年12月至2023年7月收集的数据对1LHAASO J0007+7303u进行了专门的数据分析。该源在8-100 TeV和100 TeV的显著性分别为21σ和17σ。相应的外延分别为0.23°±0.03°和0.17°±0.03°。提出该发射来自PSR J0007+7303的PWN内加速的相对论性电子。能谱可以用指数截断函数\(dN/dE=(42.4\pm 4.1)({E\over 20\ \text{TeV}})^{-2.31\pm 0.11}\ \text{exp}(-{E\over 110\pm 25\ \text{TeV}})\) TeV−1 cm−2 s−1的幂律很好地描述,在8 ~ 300 TeV的能量范围内,这意味着在≈50 TeV以上的能量范围内存在稳态母电子能谱\(dN_{e}/dE_{e} \propto \ ({E_{e} \over 100\ \text{TeV}})^{-3.13\pm 0.16}\ \text{exp}[({-E_{e}\over373\pm 70\ \text{TeV}})^{2}]\)。电子能谱的截止能量大致等于在PWN末端激波处加速的粒子的期望电流最大能量。结合x射线和伽马射线发射,当前的空间平均磁场可以限制在≈4.5µG。为了满足多波长谱和γ射线延伸,在自由膨胀相假设下,相对论性粒子在PWN内的输运可能以平流过程为主。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep view of composite SNR CTA1 with LHAASO in γ-rays up to 300 TeV

The ultra-high-energy (UHE) gamma-ray source 1LHAASO J0007+7303u is positionally associated with the composite SNR CTA1 that is located at high Galactic Latitude b ≈ 10.5°. This provides a rare opportunity to spatially resolve the component of the pulsar wind nebula (PWN) and supernova remnant (SNR) at UHE. This paper conducted a dedicated data analysis of 1LHAASO J0007+7303u using the data collected from December 2019 to July 2023. This source is well detected with significances of 21σ and 17σ at 8–100 TeV and >100 TeV, respectively. The corresponding extensions are determined to be 0.23°±0.03° and 0.17°±0.03°. The emission is proposed to originate from the relativistic electrons accelerated within the PWN of PSR J0007+7303. The energy spectrum is well described by a power-law with an exponential cutoff function \(dN/dE=(42.4\pm 4.1)({E\over 20\ \text{TeV}})^{-2.31\pm 0.11}\ \text{exp}(-{E\over 110\pm 25\ \text{TeV}})\) TeV−1 cm−2 s−1 in the energy range from 8 to 300 TeV, implying a steady-state parent electron spectrum \(dN_{e}/dE_{e} \propto \ ({E_{e} \over 100\ \text{TeV}})^{-3.13\pm 0.16}\ \text{exp}[({-E_{e}\over373\pm 70\ \text{TeV}})^{2}]\) at energies above ≈ 50 TeV. The cutoff energy of the electron spectrum is roughly equal to the expected current maximum energy of particles accelerated at the PWN terminal shock. Combining the X-ray and gamma-ray emission, the current space-averaged magnetic field can be limited to ≈ 4.5 µG. To satisfy the multi-wavelength spectrum and the γ-ray extensions, the transport of relativistic particles within the PWN is likely dominated by the advection process under the free-expansion phase assumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信