可线性广义区间交换变换共轭的正则性

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Selim Ghazouani, Corinna Ulcigrai
{"title":"可线性广义区间交换变换共轭的正则性","authors":"Selim Ghazouani,&nbsp;Corinna Ulcigrai","doi":"10.1007/s00220-024-05197-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider generalized interval exchange transformations (GIETs) of <span>\\(d\\ge 2\\)</span> intervals which are <i>linearizable</i>, i.e. differentiably conjugated to standard interval exchange maps (IETs) via a diffeomorphism <i>h</i> of [0, 1] and study the regularity of the conjugacy <i>h</i>. Using a renormalization operator obtained accelerating Rauzy–Veech induction, we show that, under a full measure condition on the IET obtained by linearization, if the orbit of the GIET under renormalization converges exponentially fast in a <span>\\({\\mathcal {C}}^2\\)</span> distance to the subspace of IETs, there exists an exponent <span>\\(0&lt;\\alpha &lt;1\\)</span> such that <i>h</i> is <span>\\({\\mathcal {C}}^{1+\\alpha }\\)</span>. Combined with the results proved by the authors in [4], this implies in particular the following improvement of the rigidity result in genus two proved in [4] (from <span>\\({\\mathcal {C}}^1\\)</span> to <span>\\({\\mathcal {C}}^{1+\\alpha }\\)</span> rigidity): for almost every irreducible IET <span>\\(T_0 \\)</span> with <span>\\(d=4\\)</span> or <span>\\(d=5\\)</span>, for any GIET which is topologically conjugate to <span>\\(T_0\\)</span> via a homeomorphism <i>h</i> and has vanishing boundary, the topological conjugacy <i>h</i> is actually a <span>\\({\\mathcal {C}}^{1+\\alpha }\\)</span> diffeomorphism, i.e. a diffeomorphism <i>h</i> with derivative <i>Dh</i> which is <span>\\(\\alpha \\)</span>-Hölder continuous.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05197-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Regularity of Conjugacies of Linearizable Generalized Interval Exchange Transformations\",\"authors\":\"Selim Ghazouani,&nbsp;Corinna Ulcigrai\",\"doi\":\"10.1007/s00220-024-05197-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider generalized interval exchange transformations (GIETs) of <span>\\\\(d\\\\ge 2\\\\)</span> intervals which are <i>linearizable</i>, i.e. differentiably conjugated to standard interval exchange maps (IETs) via a diffeomorphism <i>h</i> of [0, 1] and study the regularity of the conjugacy <i>h</i>. Using a renormalization operator obtained accelerating Rauzy–Veech induction, we show that, under a full measure condition on the IET obtained by linearization, if the orbit of the GIET under renormalization converges exponentially fast in a <span>\\\\({\\\\mathcal {C}}^2\\\\)</span> distance to the subspace of IETs, there exists an exponent <span>\\\\(0&lt;\\\\alpha &lt;1\\\\)</span> such that <i>h</i> is <span>\\\\({\\\\mathcal {C}}^{1+\\\\alpha }\\\\)</span>. Combined with the results proved by the authors in [4], this implies in particular the following improvement of the rigidity result in genus two proved in [4] (from <span>\\\\({\\\\mathcal {C}}^1\\\\)</span> to <span>\\\\({\\\\mathcal {C}}^{1+\\\\alpha }\\\\)</span> rigidity): for almost every irreducible IET <span>\\\\(T_0 \\\\)</span> with <span>\\\\(d=4\\\\)</span> or <span>\\\\(d=5\\\\)</span>, for any GIET which is topologically conjugate to <span>\\\\(T_0\\\\)</span> via a homeomorphism <i>h</i> and has vanishing boundary, the topological conjugacy <i>h</i> is actually a <span>\\\\({\\\\mathcal {C}}^{1+\\\\alpha }\\\\)</span> diffeomorphism, i.e. a diffeomorphism <i>h</i> with derivative <i>Dh</i> which is <span>\\\\(\\\\alpha \\\\)</span>-Hölder continuous.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-024-05197-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05197-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05197-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑\(d\ge 2\)区间的广义区间交换变换(GIETs)是线性的,即通过[0,1]的微分同构h可微分共轭到标准区间交换映射(IETs),并研究了其共轭h的规律性。利用加速Rauzy-Veech归纳得到的重整化算子,我们证明了在线性化得到的广义区间交换映射的满测度条件下,如果重整后的GIET轨道在距离其子空间\({\mathcal {C}}^2\)的距离上以指数速度收敛,则存在一个指数\(0<\alpha <1\)使得h = \({\mathcal {C}}^{1+\alpha }\)。结合作者在[4]中证明的结果,这特别意味着在[4]中证明的属2的刚度结果的以下改进(从\({\mathcal {C}}^1\)到\({\mathcal {C}}^{1+\alpha }\)刚度):对于几乎每一个具有\(d=4\)或\(d=5\)的不可约IET \(T_0 \),对于任何通过同胚h拓扑共轭于\(T_0\)且具有消失边界的GIET,其拓扑共轭h实际上是一个\({\mathcal {C}}^{1+\alpha }\)微分同胚,即具有\(\alpha \) -Hölder连续导数Dh的微分同胚h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of Conjugacies of Linearizable Generalized Interval Exchange Transformations

We consider generalized interval exchange transformations (GIETs) of \(d\ge 2\) intervals which are linearizable, i.e. differentiably conjugated to standard interval exchange maps (IETs) via a diffeomorphism h of [0, 1] and study the regularity of the conjugacy h. Using a renormalization operator obtained accelerating Rauzy–Veech induction, we show that, under a full measure condition on the IET obtained by linearization, if the orbit of the GIET under renormalization converges exponentially fast in a \({\mathcal {C}}^2\) distance to the subspace of IETs, there exists an exponent \(0<\alpha <1\) such that h is \({\mathcal {C}}^{1+\alpha }\). Combined with the results proved by the authors in [4], this implies in particular the following improvement of the rigidity result in genus two proved in [4] (from \({\mathcal {C}}^1\) to \({\mathcal {C}}^{1+\alpha }\) rigidity): for almost every irreducible IET \(T_0 \) with \(d=4\) or \(d=5\), for any GIET which is topologically conjugate to \(T_0\) via a homeomorphism h and has vanishing boundary, the topological conjugacy h is actually a \({\mathcal {C}}^{1+\alpha }\) diffeomorphism, i.e. a diffeomorphism h with derivative Dh which is \(\alpha \)-Hölder continuous.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信