采用数字图像算法对SFP材料内部界面的力学性能进行了数值分析

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Xiaoyu Liu, Kuanghuai Wu, Giovanni Giacomello, Xu Cai, Marco Pasetto
{"title":"采用数字图像算法对SFP材料内部界面的力学性能进行了数值分析","authors":"Xiaoyu Liu,&nbsp;Kuanghuai Wu,&nbsp;Giovanni Giacomello,&nbsp;Xu Cai,&nbsp;Marco Pasetto","doi":"10.1617/s11527-025-02575-3","DOIUrl":null,"url":null,"abstract":"<div><p>Semi-flexible pavements (SFP) are extensively used in high-traffic zones owing to their outstanding resistance against rutting. Nonetheless, interface cracking persists as a prominent issue within SFP composites. This study establishes a finite element model of SFP using a computer vision algorithm to analyze its mechanical properties at the internal interface. Two interface components, namely the aggregate-asphalt and asphalt-grout interfaces, were developed to simulate stress distribution, crack initiation, and extension within the multiphase composite of SFP. The examination of transition zone properties within the asphalt-grout interface shed light on damage morphology and mechanical response. The results demonstrate that incorporating the interface layer significantly enhances the accuracy of force behavior analysis in simulating SFP materials. Furthermore, reinforcing the interface transition zone boosts the overall peak compressive strain strength of SFP materials in tandem with increased interface strength. Moreover, the grout joints and asphalt-grout interfaces within SFP act as vulnerable points where cracks propagate swiftly, leading to the detachment of cementitious grout from the base asphalt mixture.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of mechanical properties at the internal interface of SFP material using a digital image algorithm\",\"authors\":\"Xiaoyu Liu,&nbsp;Kuanghuai Wu,&nbsp;Giovanni Giacomello,&nbsp;Xu Cai,&nbsp;Marco Pasetto\",\"doi\":\"10.1617/s11527-025-02575-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semi-flexible pavements (SFP) are extensively used in high-traffic zones owing to their outstanding resistance against rutting. Nonetheless, interface cracking persists as a prominent issue within SFP composites. This study establishes a finite element model of SFP using a computer vision algorithm to analyze its mechanical properties at the internal interface. Two interface components, namely the aggregate-asphalt and asphalt-grout interfaces, were developed to simulate stress distribution, crack initiation, and extension within the multiphase composite of SFP. The examination of transition zone properties within the asphalt-grout interface shed light on damage morphology and mechanical response. The results demonstrate that incorporating the interface layer significantly enhances the accuracy of force behavior analysis in simulating SFP materials. Furthermore, reinforcing the interface transition zone boosts the overall peak compressive strain strength of SFP materials in tandem with increased interface strength. Moreover, the grout joints and asphalt-grout interfaces within SFP act as vulnerable points where cracks propagate swiftly, leading to the detachment of cementitious grout from the base asphalt mixture.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-025-02575-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02575-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

半柔性路面(SFP)由于其优异的抗车辙性能而广泛应用于交通繁忙的区域。尽管如此,界面开裂仍然是SFP复合材料中的一个突出问题。本研究利用计算机视觉算法建立了SFP的有限元模型,分析其内部界面处的力学性能。采用骨料-沥青和沥青-浆液两种界面分量模拟了SFP多相复合材料的应力分布、裂缝萌生和扩展。沥青-浆液界面过渡区特性的研究揭示了沥青-浆液界面的损伤形态和力学响应。结果表明,在模拟SFP材料时,加入界面层可显著提高受力特性分析的准确性。此外,增强界面过渡区可以提高SFP材料的整体峰值抗压应变强度,同时提高界面强度。此外,SFP内的浆液接缝和沥青-浆液界面作为脆弱点,裂缝迅速扩展,导致胶凝浆液从基层沥青混合物中脱离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical analysis of mechanical properties at the internal interface of SFP material using a digital image algorithm

Numerical analysis of mechanical properties at the internal interface of SFP material using a digital image algorithm

Semi-flexible pavements (SFP) are extensively used in high-traffic zones owing to their outstanding resistance against rutting. Nonetheless, interface cracking persists as a prominent issue within SFP composites. This study establishes a finite element model of SFP using a computer vision algorithm to analyze its mechanical properties at the internal interface. Two interface components, namely the aggregate-asphalt and asphalt-grout interfaces, were developed to simulate stress distribution, crack initiation, and extension within the multiphase composite of SFP. The examination of transition zone properties within the asphalt-grout interface shed light on damage morphology and mechanical response. The results demonstrate that incorporating the interface layer significantly enhances the accuracy of force behavior analysis in simulating SFP materials. Furthermore, reinforcing the interface transition zone boosts the overall peak compressive strain strength of SFP materials in tandem with increased interface strength. Moreover, the grout joints and asphalt-grout interfaces within SFP act as vulnerable points where cracks propagate swiftly, leading to the detachment of cementitious grout from the base asphalt mixture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信