高温下的锌离子电池:将材料设计与可穿戴/生物相容性应用联系起来

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yutong Wu, Qiong He, Yunlei Zhou, Xiang Liu, Ming Yang
{"title":"高温下的锌离子电池:将材料设计与可穿戴/生物相容性应用联系起来","authors":"Yutong Wu,&nbsp;Qiong He,&nbsp;Yunlei Zhou,&nbsp;Xiang Liu,&nbsp;Ming Yang","doi":"10.1007/s42114-024-01122-y","DOIUrl":null,"url":null,"abstract":"<div><p>Aqueous zinc-ion batteries (AZIBs) have gained recognition as safe, sustainable, and cost-effective alternatives to lithium-ion batteries (LIBs). Despite considerable progress in enhancing performance at room and low temperatures for large-scale applications, maintaining functionality at high temperatures remains a major challenge, restricting the use of safe, biocompatible, and body-adaptive AZIBs in small-scale wearable and implantable technologies. Exploring advanced materials to enhance high-temperature performance and ensure a long lifespan with a stable power supply is essential for enabling the practical use of wearable and biocompatible devices across diverse scenarios. This review begins with an overview of the failure mechanisms of AZIBs at elevated temperatures, followed by an exploration of material design strategies to address these challenges, focusing on electrode development, electrolyte optimization, and electrolyte optimization to date. Emphasis is placed on aligning material innovations with practical performance requirements in compact applications, particularly for wearable electronics and biocompatible batteries in medical devices, where elevated temperatures are often unavoidable and safety is paramount. Future research directions for small-scale wearable, biocompatible, and implantable AZIBs include precise device-level design and packaging, development of pilot-scale low-cost continuous material production protocols, and implementation of in situ visualization and analysis techniques to monitor battery and material failure to prevent side reactions and ensure battery long-term stability and practicability.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc-ion batteries at elevated temperatures: linking material design to wearable/biocompatible applications\",\"authors\":\"Yutong Wu,&nbsp;Qiong He,&nbsp;Yunlei Zhou,&nbsp;Xiang Liu,&nbsp;Ming Yang\",\"doi\":\"10.1007/s42114-024-01122-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aqueous zinc-ion batteries (AZIBs) have gained recognition as safe, sustainable, and cost-effective alternatives to lithium-ion batteries (LIBs). Despite considerable progress in enhancing performance at room and low temperatures for large-scale applications, maintaining functionality at high temperatures remains a major challenge, restricting the use of safe, biocompatible, and body-adaptive AZIBs in small-scale wearable and implantable technologies. Exploring advanced materials to enhance high-temperature performance and ensure a long lifespan with a stable power supply is essential for enabling the practical use of wearable and biocompatible devices across diverse scenarios. This review begins with an overview of the failure mechanisms of AZIBs at elevated temperatures, followed by an exploration of material design strategies to address these challenges, focusing on electrode development, electrolyte optimization, and electrolyte optimization to date. Emphasis is placed on aligning material innovations with practical performance requirements in compact applications, particularly for wearable electronics and biocompatible batteries in medical devices, where elevated temperatures are often unavoidable and safety is paramount. Future research directions for small-scale wearable, biocompatible, and implantable AZIBs include precise device-level design and packaging, development of pilot-scale low-cost continuous material production protocols, and implementation of in situ visualization and analysis techniques to monitor battery and material failure to prevent side reactions and ensure battery long-term stability and practicability.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01122-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01122-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

水性锌离子电池(azib)作为锂离子电池(lib)的安全、可持续和经济的替代品已得到认可。尽管在提高室温和低温下的大规模应用性能方面取得了相当大的进展,但在高温下保持功能仍然是一个主要挑战,这限制了安全、生物相容性和身体适应性azib在小规模可穿戴和可植入技术中的使用。探索先进材料以提高高温性能并确保稳定电源的长寿命对于实现可穿戴和生物相容性设备在各种场景中的实际使用至关重要。本文首先概述了azib在高温下的失效机制,然后探讨了解决这些挑战的材料设计策略,重点是电极开发、电解质优化和迄今为止的电解质优化。重点放在使材料创新与紧凑型应用的实际性能要求保持一致,特别是对于医疗设备中的可穿戴电子设备和生物相容性电池,其中高温通常是不可避免的,安全至关重要。小规模可穿戴、生物相容性和植入式azib的未来研究方向包括精确的设备级设计和封装,中试规模低成本连续材料生产方案的开发,以及原位可视化和分析技术的实施,以监测电池和材料的故障,以防止副反应,确保电池的长期稳定性和实用性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zinc-ion batteries at elevated temperatures: linking material design to wearable/biocompatible applications

Aqueous zinc-ion batteries (AZIBs) have gained recognition as safe, sustainable, and cost-effective alternatives to lithium-ion batteries (LIBs). Despite considerable progress in enhancing performance at room and low temperatures for large-scale applications, maintaining functionality at high temperatures remains a major challenge, restricting the use of safe, biocompatible, and body-adaptive AZIBs in small-scale wearable and implantable technologies. Exploring advanced materials to enhance high-temperature performance and ensure a long lifespan with a stable power supply is essential for enabling the practical use of wearable and biocompatible devices across diverse scenarios. This review begins with an overview of the failure mechanisms of AZIBs at elevated temperatures, followed by an exploration of material design strategies to address these challenges, focusing on electrode development, electrolyte optimization, and electrolyte optimization to date. Emphasis is placed on aligning material innovations with practical performance requirements in compact applications, particularly for wearable electronics and biocompatible batteries in medical devices, where elevated temperatures are often unavoidable and safety is paramount. Future research directions for small-scale wearable, biocompatible, and implantable AZIBs include precise device-level design and packaging, development of pilot-scale low-cost continuous material production protocols, and implementation of in situ visualization and analysis techniques to monitor battery and material failure to prevent side reactions and ensure battery long-term stability and practicability.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信