论舒尔的第二不可约定理

IF 0.6 3区 数学 Q3 MATHEMATICS
A. Jakhar, R. Kalwaniya
{"title":"论舒尔的第二不可约定理","authors":"A. Jakhar,&nbsp;R. Kalwaniya","doi":"10.1007/s10474-024-01478-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(n\\)</span> be a positive integer different from <span>\\(8\\)</span> and <span>\\(n+1 \\neq 2^u\\)</span> for any integer <span>\\(u\\geq 2\\)</span>. Let <span>\\(\\phi(x)\\)</span> belonging to <span>\\(Z[x]\\)</span> be a monic polynomial which is irreducible modulo all primes less than or equal to <span>\\(n+1\\)</span>. Let <span>\\(a_j(x)\\)</span> with <span>\\(0\\leq j\\leq n-1\\)</span> belonging to <span>\\(Z[x]\\)</span> be polynomials having degree less than <span>\\(\\deg\\phi(x)\\)</span>. Assume that the content of <span>\\(a_na_0(x)\\)</span> is not divisible by any prime less than or equal to <span>\\(n+1\\)</span>. We prove that the polynomial \n</p><div><div><span>$$\nf(x) = a_n\\frac{\\phi(x)^n}{(n+1)!}+ \\sum _{j=0}^{n-1}a_j(x)\\frac{\\phi(x)^{j}}{(j+1)!}\n$$</span></div></div><p>\nis irreducible over the field <span>\\(Q\\)</span> of rational numbers. This generalises a well-known result of Schur which states that the polynomial <span>\\( \\sum _{j=0}^{n}a_j\\frac{x^{j}}{(j+1)!}\\)</span> with <span>\\(a_j \\in Z\\)</span> and <span>\\(|a_0| = |a_n| = 1\\)</span> is irreducible over <span>\\(Q\\)</span>. For proving our results, we use the notion of <span>\\(\\phi\\)</span>-Newton polygons and a few results on primes from number theory. We illustrate our result through examples.\n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"289 - 298"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the second irreducibility theorem of I. Schur\",\"authors\":\"A. Jakhar,&nbsp;R. Kalwaniya\",\"doi\":\"10.1007/s10474-024-01478-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(n\\\\)</span> be a positive integer different from <span>\\\\(8\\\\)</span> and <span>\\\\(n+1 \\\\neq 2^u\\\\)</span> for any integer <span>\\\\(u\\\\geq 2\\\\)</span>. Let <span>\\\\(\\\\phi(x)\\\\)</span> belonging to <span>\\\\(Z[x]\\\\)</span> be a monic polynomial which is irreducible modulo all primes less than or equal to <span>\\\\(n+1\\\\)</span>. Let <span>\\\\(a_j(x)\\\\)</span> with <span>\\\\(0\\\\leq j\\\\leq n-1\\\\)</span> belonging to <span>\\\\(Z[x]\\\\)</span> be polynomials having degree less than <span>\\\\(\\\\deg\\\\phi(x)\\\\)</span>. Assume that the content of <span>\\\\(a_na_0(x)\\\\)</span> is not divisible by any prime less than or equal to <span>\\\\(n+1\\\\)</span>. We prove that the polynomial \\n</p><div><div><span>$$\\nf(x) = a_n\\\\frac{\\\\phi(x)^n}{(n+1)!}+ \\\\sum _{j=0}^{n-1}a_j(x)\\\\frac{\\\\phi(x)^{j}}{(j+1)!}\\n$$</span></div></div><p>\\nis irreducible over the field <span>\\\\(Q\\\\)</span> of rational numbers. This generalises a well-known result of Schur which states that the polynomial <span>\\\\( \\\\sum _{j=0}^{n}a_j\\\\frac{x^{j}}{(j+1)!}\\\\)</span> with <span>\\\\(a_j \\\\in Z\\\\)</span> and <span>\\\\(|a_0| = |a_n| = 1\\\\)</span> is irreducible over <span>\\\\(Q\\\\)</span>. For proving our results, we use the notion of <span>\\\\(\\\\phi\\\\)</span>-Newton polygons and a few results on primes from number theory. We illustrate our result through examples.\\n</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 2\",\"pages\":\"289 - 298\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01478-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01478-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(n\)为正整数,不同于\(8\),对于任意整数\(u\geq 2\),设\(n+1 \neq 2^u\)为正整数。设\(\phi(x)\)属于\(Z[x]\)是一个对小于或等于\(n+1\)的所有素数模不可约的一元多项式。设\(a_j(x)\)和\(0\leq j\leq n-1\)属于\(Z[x]\)是次小于\(\deg\phi(x)\)的多项式。假设\(a_na_0(x)\)的内容不能被任何小于或等于\(n+1\)的质数整除。证明了多项式$$f(x) = a_n\frac{\phi(x)^n}{(n+1)!}+ \sum _{j=0}^{n-1}a_j(x)\frac{\phi(x)^{j}}{(j+1)!}$$在有理数域\(Q\)上是不可约的。这推广了舒尔的一个著名结果,即含有\(a_j \in Z\)和\(|a_0| = |a_n| = 1\)的多项式\( \sum _{j=0}^{n}a_j\frac{x^{j}}{(j+1)!}\)在\(Q\)上是不可约的。为了证明我们的结果,我们使用\(\phi\) -牛顿多边形的概念和数论中关于质数的一些结果。我们通过实例来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the second irreducibility theorem of I. Schur

Let \(n\) be a positive integer different from \(8\) and \(n+1 \neq 2^u\) for any integer \(u\geq 2\). Let \(\phi(x)\) belonging to \(Z[x]\) be a monic polynomial which is irreducible modulo all primes less than or equal to \(n+1\). Let \(a_j(x)\) with \(0\leq j\leq n-1\) belonging to \(Z[x]\) be polynomials having degree less than \(\deg\phi(x)\). Assume that the content of \(a_na_0(x)\) is not divisible by any prime less than or equal to \(n+1\). We prove that the polynomial

$$ f(x) = a_n\frac{\phi(x)^n}{(n+1)!}+ \sum _{j=0}^{n-1}a_j(x)\frac{\phi(x)^{j}}{(j+1)!} $$

is irreducible over the field \(Q\) of rational numbers. This generalises a well-known result of Schur which states that the polynomial \( \sum _{j=0}^{n}a_j\frac{x^{j}}{(j+1)!}\) with \(a_j \in Z\) and \(|a_0| = |a_n| = 1\) is irreducible over \(Q\). For proving our results, we use the notion of \(\phi\)-Newton polygons and a few results on primes from number theory. We illustrate our result through examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信