{"title":"一种可注射的多功能复合生物活性水凝胶,通过免疫调节和成骨作用用于骨再生","authors":"Yanwei He, Zhiwen Luo, Xiaoshuang Nie, Yimin Du, Rong Sun, Junming Sun, Zhiheng Lin, Renwen Wan, Wenbo Chen, Xingting Feng, Fangqi Li, Xuanyong Liu, Shiyi Chen, Jiajun Qiu, Jingchi Li, Zhijie Zhao","doi":"10.1007/s42114-025-01213-4","DOIUrl":null,"url":null,"abstract":"<div><p>Bone defects represent a prevalent and significant challenge in clinical practice. Given the inflammatory microenvironment at injury sites and the requirement for endogenous cell and tissue infiltration, there is an urgent need for an ideal biomaterial that can modulate inflammation and promote bone regeneration. We developed an innovative injectable hydrogel (CH@PUE&MSN) designed for immunomodulation and bone regeneration through in situ self-assembly, incorporating puerarin and chitosan with mesoporous silica nanoparticles. In vitro experiments demonstrated that this multifunctional injectable hydrogel promotes tissue cell regeneration, reduces inflammation, inhibits osteoclast formation, induces the migration and differentiation of bone marrow mesenchymal stem cells, and facilitates bone regeneration. Furthermore, we conducted an extensive in vivo evaluation using a bone defect model, employing advanced imaging and histological analyses. Our findings indicate that this multifunctional injectable hydrogel is a promising bioactive material for bone regeneration and presents a novel strategy for the clinical management of bone defects.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01213-4.pdf","citationCount":"0","resultStr":"{\"title\":\"An injectable multi-functional composite bioactive hydrogel for bone regeneration via immunoregulatory and osteogenesis effects\",\"authors\":\"Yanwei He, Zhiwen Luo, Xiaoshuang Nie, Yimin Du, Rong Sun, Junming Sun, Zhiheng Lin, Renwen Wan, Wenbo Chen, Xingting Feng, Fangqi Li, Xuanyong Liu, Shiyi Chen, Jiajun Qiu, Jingchi Li, Zhijie Zhao\",\"doi\":\"10.1007/s42114-025-01213-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bone defects represent a prevalent and significant challenge in clinical practice. Given the inflammatory microenvironment at injury sites and the requirement for endogenous cell and tissue infiltration, there is an urgent need for an ideal biomaterial that can modulate inflammation and promote bone regeneration. We developed an innovative injectable hydrogel (CH@PUE&MSN) designed for immunomodulation and bone regeneration through in situ self-assembly, incorporating puerarin and chitosan with mesoporous silica nanoparticles. In vitro experiments demonstrated that this multifunctional injectable hydrogel promotes tissue cell regeneration, reduces inflammation, inhibits osteoclast formation, induces the migration and differentiation of bone marrow mesenchymal stem cells, and facilitates bone regeneration. Furthermore, we conducted an extensive in vivo evaluation using a bone defect model, employing advanced imaging and histological analyses. Our findings indicate that this multifunctional injectable hydrogel is a promising bioactive material for bone regeneration and presents a novel strategy for the clinical management of bone defects.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-025-01213-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-025-01213-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01213-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
An injectable multi-functional composite bioactive hydrogel for bone regeneration via immunoregulatory and osteogenesis effects
Bone defects represent a prevalent and significant challenge in clinical practice. Given the inflammatory microenvironment at injury sites and the requirement for endogenous cell and tissue infiltration, there is an urgent need for an ideal biomaterial that can modulate inflammation and promote bone regeneration. We developed an innovative injectable hydrogel (CH@PUE&MSN) designed for immunomodulation and bone regeneration through in situ self-assembly, incorporating puerarin and chitosan with mesoporous silica nanoparticles. In vitro experiments demonstrated that this multifunctional injectable hydrogel promotes tissue cell regeneration, reduces inflammation, inhibits osteoclast formation, induces the migration and differentiation of bone marrow mesenchymal stem cells, and facilitates bone regeneration. Furthermore, we conducted an extensive in vivo evaluation using a bone defect model, employing advanced imaging and histological analyses. Our findings indicate that this multifunctional injectable hydrogel is a promising bioactive material for bone regeneration and presents a novel strategy for the clinical management of bone defects.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.