单调剪切流中重力水波的线性化谱

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xiao Liu, Chongchun Zeng
{"title":"单调剪切流中重力水波的线性化谱","authors":"Xiao Liu,&nbsp;Chongchun Zeng","doi":"10.1007/s00220-024-05219-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the spectra of the 2-dim gravity waves of finite depth linearized at a uniform monotonic shear flow <span>\\(U(x_2)\\)</span>, <span>\\(x_2 \\in (-h, 0)\\)</span>, where the wave numbers <i>k</i> of the horizontal variable <span>\\(x_1\\)</span> is treated as a parameter. Our main results include a.) a complete branch of non-singular neutral modes <span>\\(c^+(k)\\)</span> strictly decreasing in <span>\\(k\\ge 0\\)</span> and converging to <i>U</i>(0) as <span>\\(k \\rightarrow \\infty \\)</span>; b.) another branch of non-singular neutral modes <span>\\(c_-(k)\\)</span>, <span>\\(k \\in (-k_-, k_-)\\)</span> for some <span>\\(k_-&gt;0\\)</span>, with <span>\\(c_-(\\pm k_-) = U(-h)\\)</span>; c.) the non-degeneracy and the bifurcation at <span>\\((k_-, c=U(-h))\\)</span>; d.) the existence and non-existence of unstable modes for <i>c</i> near <i>U</i>(0), <span>\\(U(-h)\\)</span>, and interior inflection values of <i>U</i>; e.) the complete spectral distribution in the case where <span>\\(U''\\)</span> does not change sign or changes sign exactly once non-degenerately. In particular, <i>U</i> is spectrally stable if <span>\\(U'U''\\le 0\\)</span> and unstable if <i>U</i> has a non-degenerate interior inflection value or <span>\\(\\{U'U''&gt;0\\}\\)</span> accumulate at <span>\\(x_2=-h\\)</span> or 0. Moreover, if <i>U</i> is an unstable shear flow of the fixed boundary problem in a channel, then strong gravity could cause instability of the linearized gravity waves in all long waves (i.e. <span>\\(|k|\\ll 1\\)</span>).</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Spectra of the Gravity Water Waves Linearized at Monotone Shear Flows\",\"authors\":\"Xiao Liu,&nbsp;Chongchun Zeng\",\"doi\":\"10.1007/s00220-024-05219-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the spectra of the 2-dim gravity waves of finite depth linearized at a uniform monotonic shear flow <span>\\\\(U(x_2)\\\\)</span>, <span>\\\\(x_2 \\\\in (-h, 0)\\\\)</span>, where the wave numbers <i>k</i> of the horizontal variable <span>\\\\(x_1\\\\)</span> is treated as a parameter. Our main results include a.) a complete branch of non-singular neutral modes <span>\\\\(c^+(k)\\\\)</span> strictly decreasing in <span>\\\\(k\\\\ge 0\\\\)</span> and converging to <i>U</i>(0) as <span>\\\\(k \\\\rightarrow \\\\infty \\\\)</span>; b.) another branch of non-singular neutral modes <span>\\\\(c_-(k)\\\\)</span>, <span>\\\\(k \\\\in (-k_-, k_-)\\\\)</span> for some <span>\\\\(k_-&gt;0\\\\)</span>, with <span>\\\\(c_-(\\\\pm k_-) = U(-h)\\\\)</span>; c.) the non-degeneracy and the bifurcation at <span>\\\\((k_-, c=U(-h))\\\\)</span>; d.) the existence and non-existence of unstable modes for <i>c</i> near <i>U</i>(0), <span>\\\\(U(-h)\\\\)</span>, and interior inflection values of <i>U</i>; e.) the complete spectral distribution in the case where <span>\\\\(U''\\\\)</span> does not change sign or changes sign exactly once non-degenerately. In particular, <i>U</i> is spectrally stable if <span>\\\\(U'U''\\\\le 0\\\\)</span> and unstable if <i>U</i> has a non-degenerate interior inflection value or <span>\\\\(\\\\{U'U''&gt;0\\\\}\\\\)</span> accumulate at <span>\\\\(x_2=-h\\\\)</span> or 0. Moreover, if <i>U</i> is an unstable shear flow of the fixed boundary problem in a channel, then strong gravity could cause instability of the linearized gravity waves in all long waves (i.e. <span>\\\\(|k|\\\\ll 1\\\\)</span>).</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 2\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05219-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05219-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在均匀单调剪切流\(U(x_2)\), \(x_2 \in (-h, 0)\)下线性化的有限深度2暗淡重力波的谱,其中水平变量\(x_1\)的波数k作为参数。我们的主要成果包括a.)非奇异中立模态的完全分支\(c^+(k)\)在\(k\ge 0\)严格递减并收敛于U(0)为\(k \rightarrow \infty \);b)非奇异中性模态的另一分支\(c_-(k)\), \(k \in (-k_-, k_-)\)为有的\(k_->0\),带\(c_-(\pm k_-) = U(-h)\);c)在\((k_-, c=U(-h))\)处的非简并和分岔;d.) c在U(0)、\(U(-h)\)附近的不稳定模态的存在性和不存在性,以及U的内部拐点值;e)在\(U''\)不改变符号或只改变一次符号的情况下的完整谱分布。特别是,当\(U'U''\le 0\)时,U是谱稳定的,当U具有非简并的内部拐点值或\(\{U'U''>0\}\)累积在\(x_2=-h\)或0时,U是不稳定的。此外,如果U是通道内固定边界问题的不稳定剪切流,则强重力会导致所有长波中线性化重力波的不稳定(即\(|k|\ll 1\))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Spectra of the Gravity Water Waves Linearized at Monotone Shear Flows

We consider the spectra of the 2-dim gravity waves of finite depth linearized at a uniform monotonic shear flow \(U(x_2)\), \(x_2 \in (-h, 0)\), where the wave numbers k of the horizontal variable \(x_1\) is treated as a parameter. Our main results include a.) a complete branch of non-singular neutral modes \(c^+(k)\) strictly decreasing in \(k\ge 0\) and converging to U(0) as \(k \rightarrow \infty \); b.) another branch of non-singular neutral modes \(c_-(k)\), \(k \in (-k_-, k_-)\) for some \(k_->0\), with \(c_-(\pm k_-) = U(-h)\); c.) the non-degeneracy and the bifurcation at \((k_-, c=U(-h))\); d.) the existence and non-existence of unstable modes for c near U(0), \(U(-h)\), and interior inflection values of U; e.) the complete spectral distribution in the case where \(U''\) does not change sign or changes sign exactly once non-degenerately. In particular, U is spectrally stable if \(U'U''\le 0\) and unstable if U has a non-degenerate interior inflection value or \(\{U'U''>0\}\) accumulate at \(x_2=-h\) or 0. Moreover, if U is an unstable shear flow of the fixed boundary problem in a channel, then strong gravity could cause instability of the linearized gravity waves in all long waves (i.e. \(|k|\ll 1\)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信