关于某些3阶群上不同长度的零和子序列的存在性

IF 0.6 3区 数学 Q3 MATHEMATICS
X. Li, Q. Y. Yin
{"title":"关于某些3阶群上不同长度的零和子序列的存在性","authors":"X. Li,&nbsp;Q. Y. Yin","doi":"10.1007/s10474-024-01482-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be an additive finite abelian group. Denote by disc(<i>G</i>) the smallest positive integer <i>t</i> such that every sequence <i>S</i> over <i>G</i> of length <span>\\(|S|\\geq t\\)</span> has two nonempty zero-sum subsequences of distinct lengths. In this paper, we focus on the direct and inverse problems associated with disc(<i>G</i>) for certain groups of rank three. Explicitly, we first determine the exact value of disc(<i>G</i>) for <span>\\(G\\cong C_2\\oplus C_{n_1}\\oplus C_{n_2}\\)</span> with <span>\\(2\\mid n_1\\mid n_2\\)</span> and <span>\\(G\\cong C_3\\oplus C_{6n_3}\\oplus C_{6n_3}\\)</span> with <span>\\(n_3\\geq 1\\)</span>. Then we investigate the inverse problem. Let <span>\\(\\mathcal {L}_1(G)\\)</span> denote the set of all positive integers <i>t</i> satisfying that there is a sequence <i>S</i> over <i>G</i> of length <span>\\(|S|=\\operatorname{disc}(G)-1\\)</span> such that every nonempty zero-sum subsequence of <i>S</i> has the same length <i>t</i>. We determine <span>\\(\\mathcal {L}_1(G)\\)</span> completely for certain groups of rank three. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"323 - 340"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of zero-sum subsequences of distinct lengths over certain groups of rank three\",\"authors\":\"X. Li,&nbsp;Q. Y. Yin\",\"doi\":\"10.1007/s10474-024-01482-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be an additive finite abelian group. Denote by disc(<i>G</i>) the smallest positive integer <i>t</i> such that every sequence <i>S</i> over <i>G</i> of length <span>\\\\(|S|\\\\geq t\\\\)</span> has two nonempty zero-sum subsequences of distinct lengths. In this paper, we focus on the direct and inverse problems associated with disc(<i>G</i>) for certain groups of rank three. Explicitly, we first determine the exact value of disc(<i>G</i>) for <span>\\\\(G\\\\cong C_2\\\\oplus C_{n_1}\\\\oplus C_{n_2}\\\\)</span> with <span>\\\\(2\\\\mid n_1\\\\mid n_2\\\\)</span> and <span>\\\\(G\\\\cong C_3\\\\oplus C_{6n_3}\\\\oplus C_{6n_3}\\\\)</span> with <span>\\\\(n_3\\\\geq 1\\\\)</span>. Then we investigate the inverse problem. Let <span>\\\\(\\\\mathcal {L}_1(G)\\\\)</span> denote the set of all positive integers <i>t</i> satisfying that there is a sequence <i>S</i> over <i>G</i> of length <span>\\\\(|S|=\\\\operatorname{disc}(G)-1\\\\)</span> such that every nonempty zero-sum subsequence of <i>S</i> has the same length <i>t</i>. We determine <span>\\\\(\\\\mathcal {L}_1(G)\\\\)</span> completely for certain groups of rank three. </p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 2\",\"pages\":\"323 - 340\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01482-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01482-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个可加有限阿贝尔群。用圆盘(G)表示最小的正整数t,使得每个长度为\(|S|\geq t\)的序列S / G有两个长度不同的非空零和子序列。在本文中,我们研究了与圆盘(G)有关的某些3阶群的正问题和逆问题。明确地,我们首先用\(2\mid n_1\mid n_2\)确定\(G\cong C_2\oplus C_{n_1}\oplus C_{n_2}\)的圆盘(G)的确切值,用\(n_3\geq 1\)确定\(G\cong C_3\oplus C_{6n_3}\oplus C_{6n_3}\)的圆盘(G)的确切值。然后我们研究了逆问题。设\(\mathcal {L}_1(G)\)表示所有正整数t的集合,满足存在一个长度为\(|S|=\operatorname{disc}(G)-1\)的序列S / G,使得S的每个非空零和子序列具有相同的长度t。我们完全确定\(\mathcal {L}_1(G)\)对于某些秩为3的组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of zero-sum subsequences of distinct lengths over certain groups of rank three

Let G be an additive finite abelian group. Denote by disc(G) the smallest positive integer t such that every sequence S over G of length \(|S|\geq t\) has two nonempty zero-sum subsequences of distinct lengths. In this paper, we focus on the direct and inverse problems associated with disc(G) for certain groups of rank three. Explicitly, we first determine the exact value of disc(G) for \(G\cong C_2\oplus C_{n_1}\oplus C_{n_2}\) with \(2\mid n_1\mid n_2\) and \(G\cong C_3\oplus C_{6n_3}\oplus C_{6n_3}\) with \(n_3\geq 1\). Then we investigate the inverse problem. Let \(\mathcal {L}_1(G)\) denote the set of all positive integers t satisfying that there is a sequence S over G of length \(|S|=\operatorname{disc}(G)-1\) such that every nonempty zero-sum subsequence of S has the same length t. We determine \(\mathcal {L}_1(G)\) completely for certain groups of rank three.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信