Georgios Arseniou, David W. MacFarlane, Pasi Raumonen
{"title":"树木地上部总心材和边材体积量化的新方法","authors":"Georgios Arseniou, David W. MacFarlane, Pasi Raumonen","doi":"10.1007/s00468-024-02597-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Key message</h3><p><b>Terrestrial laser scanning data of trees combined with models of heartwood content proportion of woody disks can provide\nprecise characterization of total aboveground tree sapwood and heartwood volume.</b></p><h3>Abstract</h3><p>Quantifying sapwood and heartwood content of trees is challenging. Previous studies have primarily characterized main stem wood composition, while branches have rarely been studied. Terrestrial Laser Scanning (TLS) can provide precise representations of the entire above-ground tree structure, non-destructively, to help estimate total tree sapwood and heartwood volume. In this study, we used TLS to scan above-ground portions of twenty-four open-grown, urban <i>Gleditsia triacanthos</i> trees on Michigan State University campus. TLS data were used to generate quantitative structure models that provided comprehensive characterizations of the total tree woody surface area (WSA) and volume. A subsample of trees was harvested (after scanning) and main stem and branch woody disks were collected to build models of heartwood content proportion. Models were applied to measurements from TLS to quantify complete heartwood and sapwood volume of each tree, including main stem and branches. From the base to the top of the trees, the largest portion of stem vertical cumulative volume was heartwood, whereas vertical cumulative volume of branches showed the opposite pattern. Absolute heartwood volume declined monotonically toward zero from stem base to stem top, while absolute sapwood volume declined sharply from stem base up to near the crown base and then remained relatively constant within crown. We also found that tree WSA increased with sapwood volume for both branches and main stem. This study developed a novel, general method for quantifying total aboveground sapwood and heartwood volume of trees and provided new insights into urban tree growth and structure.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00468-024-02597-4.pdf","citationCount":"0","resultStr":"{\"title\":\"A new approach for quantification of total above-ground heartwood and sapwood volume of trees\",\"authors\":\"Georgios Arseniou, David W. MacFarlane, Pasi Raumonen\",\"doi\":\"10.1007/s00468-024-02597-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Key message</h3><p><b>Terrestrial laser scanning data of trees combined with models of heartwood content proportion of woody disks can provide\\nprecise characterization of total aboveground tree sapwood and heartwood volume.</b></p><h3>Abstract</h3><p>Quantifying sapwood and heartwood content of trees is challenging. Previous studies have primarily characterized main stem wood composition, while branches have rarely been studied. Terrestrial Laser Scanning (TLS) can provide precise representations of the entire above-ground tree structure, non-destructively, to help estimate total tree sapwood and heartwood volume. In this study, we used TLS to scan above-ground portions of twenty-four open-grown, urban <i>Gleditsia triacanthos</i> trees on Michigan State University campus. TLS data were used to generate quantitative structure models that provided comprehensive characterizations of the total tree woody surface area (WSA) and volume. A subsample of trees was harvested (after scanning) and main stem and branch woody disks were collected to build models of heartwood content proportion. Models were applied to measurements from TLS to quantify complete heartwood and sapwood volume of each tree, including main stem and branches. From the base to the top of the trees, the largest portion of stem vertical cumulative volume was heartwood, whereas vertical cumulative volume of branches showed the opposite pattern. Absolute heartwood volume declined monotonically toward zero from stem base to stem top, while absolute sapwood volume declined sharply from stem base up to near the crown base and then remained relatively constant within crown. We also found that tree WSA increased with sapwood volume for both branches and main stem. This study developed a novel, general method for quantifying total aboveground sapwood and heartwood volume of trees and provided new insights into urban tree growth and structure.</p></div>\",\"PeriodicalId\":805,\"journal\":{\"name\":\"Trees\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00468-024-02597-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trees\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00468-024-02597-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-024-02597-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
A new approach for quantification of total above-ground heartwood and sapwood volume of trees
Key message
Terrestrial laser scanning data of trees combined with models of heartwood content proportion of woody disks can provide
precise characterization of total aboveground tree sapwood and heartwood volume.
Abstract
Quantifying sapwood and heartwood content of trees is challenging. Previous studies have primarily characterized main stem wood composition, while branches have rarely been studied. Terrestrial Laser Scanning (TLS) can provide precise representations of the entire above-ground tree structure, non-destructively, to help estimate total tree sapwood and heartwood volume. In this study, we used TLS to scan above-ground portions of twenty-four open-grown, urban Gleditsia triacanthos trees on Michigan State University campus. TLS data were used to generate quantitative structure models that provided comprehensive characterizations of the total tree woody surface area (WSA) and volume. A subsample of trees was harvested (after scanning) and main stem and branch woody disks were collected to build models of heartwood content proportion. Models were applied to measurements from TLS to quantify complete heartwood and sapwood volume of each tree, including main stem and branches. From the base to the top of the trees, the largest portion of stem vertical cumulative volume was heartwood, whereas vertical cumulative volume of branches showed the opposite pattern. Absolute heartwood volume declined monotonically toward zero from stem base to stem top, while absolute sapwood volume declined sharply from stem base up to near the crown base and then remained relatively constant within crown. We also found that tree WSA increased with sapwood volume for both branches and main stem. This study developed a novel, general method for quantifying total aboveground sapwood and heartwood volume of trees and provided new insights into urban tree growth and structure.
期刊介绍:
Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.