{"title":"氢氧化钠(NaOH)和氧化石墨烯(GO)对菠萝叶纤维(PLF)的表面改性及表征","authors":"Hasan Mahmud, Shilpi Akter, Shafiqul Islam","doi":"10.1007/s12221-024-00794-z","DOIUrl":null,"url":null,"abstract":"<div><p>The present study revealed the effect of alkali (sodium hydroxide, NaOH) and graphene oxide (GO) treatment on the mechanical and thermal characteristics of the raw pineapple leaf fiber (PLF). This was carried out using different concentrations of NaOH (2, 4, 6, 8 and 10% at variable time of 2, 4, 6, 8 and 10 h) and GO (0.5 mg/mL, 0.75 mg/ mL, 1 mg/ mL, 1.25 mg/ mL for 30 min) to determine the optimal treatment conditions. The results showed substantial increase in average tensile strength and thermal stability of the fibers post-treatment. Specifically, a 1 mg/ mL concentration of GO exhibited the highest mean strength, enhancing the fiber's structural integrity. Both raw and treated fiber samples were analysed by different characterization techniques. Results of the FTIR, SEM, DSC and TGA analysis confirmed the removal of impurities and the successful addition of NaOH and GO into the fiber matrix. These findings suggest that chemical modification of PLF can yield high-performance materials. This study presents a novel method to improving the characteristics of natural fibers contributing to development of sustainable as well as the efficient composite materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 1","pages":"337 - 351"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Modification and Characterization of Raw Pineapple Leaf Fibers (PLF) Using Sodium Hydroxide (NaOH) and Graphene Oxide (GO)\",\"authors\":\"Hasan Mahmud, Shilpi Akter, Shafiqul Islam\",\"doi\":\"10.1007/s12221-024-00794-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study revealed the effect of alkali (sodium hydroxide, NaOH) and graphene oxide (GO) treatment on the mechanical and thermal characteristics of the raw pineapple leaf fiber (PLF). This was carried out using different concentrations of NaOH (2, 4, 6, 8 and 10% at variable time of 2, 4, 6, 8 and 10 h) and GO (0.5 mg/mL, 0.75 mg/ mL, 1 mg/ mL, 1.25 mg/ mL for 30 min) to determine the optimal treatment conditions. The results showed substantial increase in average tensile strength and thermal stability of the fibers post-treatment. Specifically, a 1 mg/ mL concentration of GO exhibited the highest mean strength, enhancing the fiber's structural integrity. Both raw and treated fiber samples were analysed by different characterization techniques. Results of the FTIR, SEM, DSC and TGA analysis confirmed the removal of impurities and the successful addition of NaOH and GO into the fiber matrix. These findings suggest that chemical modification of PLF can yield high-performance materials. This study presents a novel method to improving the characteristics of natural fibers contributing to development of sustainable as well as the efficient composite materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"26 1\",\"pages\":\"337 - 351\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00794-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00794-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Surface Modification and Characterization of Raw Pineapple Leaf Fibers (PLF) Using Sodium Hydroxide (NaOH) and Graphene Oxide (GO)
The present study revealed the effect of alkali (sodium hydroxide, NaOH) and graphene oxide (GO) treatment on the mechanical and thermal characteristics of the raw pineapple leaf fiber (PLF). This was carried out using different concentrations of NaOH (2, 4, 6, 8 and 10% at variable time of 2, 4, 6, 8 and 10 h) and GO (0.5 mg/mL, 0.75 mg/ mL, 1 mg/ mL, 1.25 mg/ mL for 30 min) to determine the optimal treatment conditions. The results showed substantial increase in average tensile strength and thermal stability of the fibers post-treatment. Specifically, a 1 mg/ mL concentration of GO exhibited the highest mean strength, enhancing the fiber's structural integrity. Both raw and treated fiber samples were analysed by different characterization techniques. Results of the FTIR, SEM, DSC and TGA analysis confirmed the removal of impurities and the successful addition of NaOH and GO into the fiber matrix. These findings suggest that chemical modification of PLF can yield high-performance materials. This study presents a novel method to improving the characteristics of natural fibers contributing to development of sustainable as well as the efficient composite materials.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers