脱气对高盐体系结垢的影响:土耳其图兹拉地热田

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Serhat Tonkul, Laurent André, Alper Baba, Mustafa M. Demir, Simona Regenspurg, Katrin Kieling
{"title":"脱气对高盐体系结垢的影响:土耳其图兹拉地热田","authors":"Serhat Tonkul,&nbsp;Laurent André,&nbsp;Alper Baba,&nbsp;Mustafa M. Demir,&nbsp;Simona Regenspurg,&nbsp;Katrin Kieling","doi":"10.1186/s40517-024-00320-7","DOIUrl":null,"url":null,"abstract":"<div><p>A serious issue with geothermal power plants is the loss of production and decline in power plant efficiency. Scaling, also known as mineral precipitation, is one of the frequently-observed issue that causes this loss and decreasing efficiency. It is heavily observed in the production wells when the geothermal fluid rises from the depths due to a change in the fluid’s physical and chemical properties. Scaling issue in geothermal power plants result in significant output losses and lower plant effectiveness. In rare instances, it might even result in the power plant being shut down. The chemistry of the geothermal fluid, non-condensable gases, pH, temperature and pressure changes in the process from production to reinjection, power plant type and design, and sometimes the materials used can also play an active role in the scaling that will occur in a geothermal system. ICP–MS was used to evaluate the chemical properties of the fluids. On the other hand, XRD, XRF and SEM were used to investigate the chemical and mineralogical compositions of the scale samples in analytical methods. For the numerical approach, PhreeqC and GWELL codes were used to follow the chemical reactivity of the geothermal fluid in Tuzla production well. The novelty of this study is to determine potential degassing point and to characterize the mineralogical assemblage formed in the well because of the fluid composition, temperature and pressure variations. During production, geothermal fluids degas in the wellbore. This causes a drastic modification of the chemistry of the Tuzla fluids. This is why it is focused the calculations on the nature of the minerals that are able to precipitate inside the well. According to simulation results, the degassing point is estimated to be about 105 m depth, consistent with the field observations. If a small quantity of precipitated minerals is predicted before the boiling point, degassing significantly changes the fluid chemistry, and the model predicts the deposition of calcite along with smaller elements including galena, barite, and quartz. The simulation results are consistent with the mineral composition of scaling collected in the well.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"13 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00320-7","citationCount":"0","resultStr":"{\"title\":\"Effect of degassing on scaling in hypersaline system: Tuzla geothermal field, Turkey\",\"authors\":\"Serhat Tonkul,&nbsp;Laurent André,&nbsp;Alper Baba,&nbsp;Mustafa M. Demir,&nbsp;Simona Regenspurg,&nbsp;Katrin Kieling\",\"doi\":\"10.1186/s40517-024-00320-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A serious issue with geothermal power plants is the loss of production and decline in power plant efficiency. Scaling, also known as mineral precipitation, is one of the frequently-observed issue that causes this loss and decreasing efficiency. It is heavily observed in the production wells when the geothermal fluid rises from the depths due to a change in the fluid’s physical and chemical properties. Scaling issue in geothermal power plants result in significant output losses and lower plant effectiveness. In rare instances, it might even result in the power plant being shut down. The chemistry of the geothermal fluid, non-condensable gases, pH, temperature and pressure changes in the process from production to reinjection, power plant type and design, and sometimes the materials used can also play an active role in the scaling that will occur in a geothermal system. ICP–MS was used to evaluate the chemical properties of the fluids. On the other hand, XRD, XRF and SEM were used to investigate the chemical and mineralogical compositions of the scale samples in analytical methods. For the numerical approach, PhreeqC and GWELL codes were used to follow the chemical reactivity of the geothermal fluid in Tuzla production well. The novelty of this study is to determine potential degassing point and to characterize the mineralogical assemblage formed in the well because of the fluid composition, temperature and pressure variations. During production, geothermal fluids degas in the wellbore. This causes a drastic modification of the chemistry of the Tuzla fluids. This is why it is focused the calculations on the nature of the minerals that are able to precipitate inside the well. According to simulation results, the degassing point is estimated to be about 105 m depth, consistent with the field observations. If a small quantity of precipitated minerals is predicted before the boiling point, degassing significantly changes the fluid chemistry, and the model predicts the deposition of calcite along with smaller elements including galena, barite, and quartz. The simulation results are consistent with the mineral composition of scaling collected in the well.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00320-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-024-00320-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00320-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

地热发电厂的一个严重问题是生产损失和发电厂效率下降。结垢,也称为矿物沉淀,是导致这种损失和效率降低的常见问题之一。由于地热流体的物理和化学性质的变化,当地热流体从深处上升时,在生产井中可以大量观察到这种现象。地热发电厂的规模问题导致了巨大的输出损失和较低的电厂效率。在极少数情况下,它甚至可能导致发电厂关闭。地热流体的化学性质、不可冷凝气体、pH值、温度和压力在从生产到回注的过程中发生变化,电厂类型和设计,有时所使用的材料也会在地热系统中发生的结垢中发挥积极作用。用ICP-MS评价液体的化学性质。另一方面,利用XRD、XRF和SEM等分析方法对样品的化学和矿物组成进行了研究。采用PhreeqC和GWELL代码对图兹拉生产井地热流体的化学反应性进行了数值模拟。该研究的新颖之处在于确定了潜在的脱气点,并描述了由于流体成分、温度和压力变化而在井中形成的矿物组合。在生产过程中,地热流体在井筒中脱气。这导致图兹拉流体的化学性质发生了剧烈变化。这就是为什么它将计算重点放在能够在井内沉淀的矿物的性质上。根据模拟结果,估计脱气点深度约为105 m,与现场观测结果一致。如果在沸点之前预测到少量沉淀矿物,则脱气会显著改变流体化学,并且该模型预测方解石以及方铅矿,重晶石和石英等较小元素的沉积。模拟结果与井中收集到的结垢矿物组成基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of degassing on scaling in hypersaline system: Tuzla geothermal field, Turkey

A serious issue with geothermal power plants is the loss of production and decline in power plant efficiency. Scaling, also known as mineral precipitation, is one of the frequently-observed issue that causes this loss and decreasing efficiency. It is heavily observed in the production wells when the geothermal fluid rises from the depths due to a change in the fluid’s physical and chemical properties. Scaling issue in geothermal power plants result in significant output losses and lower plant effectiveness. In rare instances, it might even result in the power plant being shut down. The chemistry of the geothermal fluid, non-condensable gases, pH, temperature and pressure changes in the process from production to reinjection, power plant type and design, and sometimes the materials used can also play an active role in the scaling that will occur in a geothermal system. ICP–MS was used to evaluate the chemical properties of the fluids. On the other hand, XRD, XRF and SEM were used to investigate the chemical and mineralogical compositions of the scale samples in analytical methods. For the numerical approach, PhreeqC and GWELL codes were used to follow the chemical reactivity of the geothermal fluid in Tuzla production well. The novelty of this study is to determine potential degassing point and to characterize the mineralogical assemblage formed in the well because of the fluid composition, temperature and pressure variations. During production, geothermal fluids degas in the wellbore. This causes a drastic modification of the chemistry of the Tuzla fluids. This is why it is focused the calculations on the nature of the minerals that are able to precipitate inside the well. According to simulation results, the degassing point is estimated to be about 105 m depth, consistent with the field observations. If a small quantity of precipitated minerals is predicted before the boiling point, degassing significantly changes the fluid chemistry, and the model predicts the deposition of calcite along with smaller elements including galena, barite, and quartz. The simulation results are consistent with the mineral composition of scaling collected in the well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信