{"title":"用于预制混凝土结构的耗能耦合器抗弯矩梁端连接","authors":"Cihan Soydan, Hasan Özkaynak, Melih Sürmeli, Erkan Şenol, Hakan Saruhan, Ercan Yüksel","doi":"10.1007/s10518-024-02067-9","DOIUrl":null,"url":null,"abstract":"<div><p>There is an increasing demand for precast reinforced concrete (RC) structures due to their undeniable advantages, such as rapid assembly, material standardization, and labor quality. The structural performance of precast RC structures depends not only on the quality of the precast members but also on joints and connections. In recent years, significant attention has been given to replaceable energy-dissipative devices for beam-to-column connections in precast RC structures. This paper proposes a novel moment-resisting energy-dissipative beam end connection in precast RC systems. The proposal is based on the results of intensive experimental and numerical studies conducted in the research project. The beam longitudinal reinforcements are connected to the joint using the developed fuse-type mechanical couplers (FTMCs) that have energy dissipation capability. While the bending moment in the connection is transformed into an axial force couple and transferred by FTMCs, the shear force is transmitted through the steel hinge at the center of the beam. The cyclic behavior of the proposed connection was experimentally investigated, resulting in a robust numerical model for the connection. The experiments demonstrated that the proper configuration of FTMCs in the connection enables reaching a 4% drift ratio without causing major damage to the RC beams. Macro models adopting pivot and kinematic hysteresis approaches for FTMCs were built in the numerical part. The pivot model reasonably and consistently predicted the experimental force–displacement relations of the proposed connections. The ability of the pivot model to estimate the energy dissipation capacities varies almost 6 ~ 16%.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 1","pages":"453 - 487"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A moment resistant beam end connection using energy dissipative couplers for precast concrete structures\",\"authors\":\"Cihan Soydan, Hasan Özkaynak, Melih Sürmeli, Erkan Şenol, Hakan Saruhan, Ercan Yüksel\",\"doi\":\"10.1007/s10518-024-02067-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is an increasing demand for precast reinforced concrete (RC) structures due to their undeniable advantages, such as rapid assembly, material standardization, and labor quality. The structural performance of precast RC structures depends not only on the quality of the precast members but also on joints and connections. In recent years, significant attention has been given to replaceable energy-dissipative devices for beam-to-column connections in precast RC structures. This paper proposes a novel moment-resisting energy-dissipative beam end connection in precast RC systems. The proposal is based on the results of intensive experimental and numerical studies conducted in the research project. The beam longitudinal reinforcements are connected to the joint using the developed fuse-type mechanical couplers (FTMCs) that have energy dissipation capability. While the bending moment in the connection is transformed into an axial force couple and transferred by FTMCs, the shear force is transmitted through the steel hinge at the center of the beam. The cyclic behavior of the proposed connection was experimentally investigated, resulting in a robust numerical model for the connection. The experiments demonstrated that the proper configuration of FTMCs in the connection enables reaching a 4% drift ratio without causing major damage to the RC beams. Macro models adopting pivot and kinematic hysteresis approaches for FTMCs were built in the numerical part. The pivot model reasonably and consistently predicted the experimental force–displacement relations of the proposed connections. The ability of the pivot model to estimate the energy dissipation capacities varies almost 6 ~ 16%.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"23 1\",\"pages\":\"453 - 487\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-02067-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02067-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A moment resistant beam end connection using energy dissipative couplers for precast concrete structures
There is an increasing demand for precast reinforced concrete (RC) structures due to their undeniable advantages, such as rapid assembly, material standardization, and labor quality. The structural performance of precast RC structures depends not only on the quality of the precast members but also on joints and connections. In recent years, significant attention has been given to replaceable energy-dissipative devices for beam-to-column connections in precast RC structures. This paper proposes a novel moment-resisting energy-dissipative beam end connection in precast RC systems. The proposal is based on the results of intensive experimental and numerical studies conducted in the research project. The beam longitudinal reinforcements are connected to the joint using the developed fuse-type mechanical couplers (FTMCs) that have energy dissipation capability. While the bending moment in the connection is transformed into an axial force couple and transferred by FTMCs, the shear force is transmitted through the steel hinge at the center of the beam. The cyclic behavior of the proposed connection was experimentally investigated, resulting in a robust numerical model for the connection. The experiments demonstrated that the proper configuration of FTMCs in the connection enables reaching a 4% drift ratio without causing major damage to the RC beams. Macro models adopting pivot and kinematic hysteresis approaches for FTMCs were built in the numerical part. The pivot model reasonably and consistently predicted the experimental force–displacement relations of the proposed connections. The ability of the pivot model to estimate the energy dissipation capacities varies almost 6 ~ 16%.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.