\(\mathcal{AN}\) -算子闭包中次正规算子的表示和正态性

IF 0.6 3区 数学 Q3 MATHEMATICS
G. Ramesh, S. S. Sequeira
{"title":"\\(\\mathcal{AN}\\) -算子闭包中次正规算子的表示和正态性","authors":"G. Ramesh,&nbsp;S. S. Sequeira","doi":"10.1007/s10474-024-01493-0","DOIUrl":null,"url":null,"abstract":"<div><p>A bounded linear operator <span>\\(T\\)</span> on a Hilbert space <span>\\(H\\)</span> is said to be absolutely norm attaining <span>\\((T \\in \\mathcal{AN}(H))\\)</span> if the restriction of <span>\\(T\\)</span> to any non-zero closed subspace attains its norm and absolutely minimum attaining <span>\\((T \\in \\mathcal{AM}(H))\\)</span> if every restriction to a non-zero closed subspace attains its minimum modulus.</p><p>In this article, we characterize normal operators in <span>\\(\\overline{\\mathcal{AN}(H)}\\)</span>, the operator norm closure of <span>\\(\\mathcal{AN}(H)\\)</span>, in terms of the essential spectrum. Later, we study representations of quasinormal and hyponormal operators in <span>\\(\\overline{\\mathcal{AN}(H)}\\)</span>. Explicitly, we prove that any hyponormal operator in <span>\\(\\overline{\\mathcal{AN}(H)}\\)</span> is a direct sum of a normal <span>\\(\\mathcal{AN}\\)</span>-operator and a <span>\\(2\\times2\\)</span> upper triangular <span>\\(\\mathcal{AM}\\)</span>-operator matrix. Finally, we deduce some sufficient conditions implying the normality of them.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"341 - 359"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation and normality of hyponormal operators in the closure of \\\\(\\\\mathcal{AN}\\\\)-operators\",\"authors\":\"G. Ramesh,&nbsp;S. S. Sequeira\",\"doi\":\"10.1007/s10474-024-01493-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A bounded linear operator <span>\\\\(T\\\\)</span> on a Hilbert space <span>\\\\(H\\\\)</span> is said to be absolutely norm attaining <span>\\\\((T \\\\in \\\\mathcal{AN}(H))\\\\)</span> if the restriction of <span>\\\\(T\\\\)</span> to any non-zero closed subspace attains its norm and absolutely minimum attaining <span>\\\\((T \\\\in \\\\mathcal{AM}(H))\\\\)</span> if every restriction to a non-zero closed subspace attains its minimum modulus.</p><p>In this article, we characterize normal operators in <span>\\\\(\\\\overline{\\\\mathcal{AN}(H)}\\\\)</span>, the operator norm closure of <span>\\\\(\\\\mathcal{AN}(H)\\\\)</span>, in terms of the essential spectrum. Later, we study representations of quasinormal and hyponormal operators in <span>\\\\(\\\\overline{\\\\mathcal{AN}(H)}\\\\)</span>. Explicitly, we prove that any hyponormal operator in <span>\\\\(\\\\overline{\\\\mathcal{AN}(H)}\\\\)</span> is a direct sum of a normal <span>\\\\(\\\\mathcal{AN}\\\\)</span>-operator and a <span>\\\\(2\\\\times2\\\\)</span> upper triangular <span>\\\\(\\\\mathcal{AM}\\\\)</span>-operator matrix. Finally, we deduce some sufficient conditions implying the normality of them.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 2\",\"pages\":\"341 - 359\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01493-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01493-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Hilbert空间\(H\)上的有界线性算子\(T\),如果\(T\)对任何非零闭子空间的限制达到其范数,则称为绝对范数达到\((T \in \mathcal{AN}(H))\);如果对非零闭子空间的每个限制都达到其最小模量,则称为绝对最小值达到\((T \in \mathcal{AM}(H))\)。在本文中,我们用本质谱来描述\(\mathcal{AN}(H)\)的算子范数闭包\(\overline{\mathcal{AN}(H)}\)中的正规算子。随后,我们在\(\overline{\mathcal{AN}(H)}\)中研究了拟非正常算子和次非正常算子的表示。明确地证明了\(\overline{\mathcal{AN}(H)}\)中的任何次正规算子是正规\(\mathcal{AN}\) -算子与\(2\times2\)上三角\(\mathcal{AM}\) -算子矩阵的直接和。最后,我们推导出了它们的正规性的几个充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation and normality of hyponormal operators in the closure of \(\mathcal{AN}\)-operators

A bounded linear operator \(T\) on a Hilbert space \(H\) is said to be absolutely norm attaining \((T \in \mathcal{AN}(H))\) if the restriction of \(T\) to any non-zero closed subspace attains its norm and absolutely minimum attaining \((T \in \mathcal{AM}(H))\) if every restriction to a non-zero closed subspace attains its minimum modulus.

In this article, we characterize normal operators in \(\overline{\mathcal{AN}(H)}\), the operator norm closure of \(\mathcal{AN}(H)\), in terms of the essential spectrum. Later, we study representations of quasinormal and hyponormal operators in \(\overline{\mathcal{AN}(H)}\). Explicitly, we prove that any hyponormal operator in \(\overline{\mathcal{AN}(H)}\) is a direct sum of a normal \(\mathcal{AN}\)-operator and a \(2\times2\) upper triangular \(\mathcal{AM}\)-operator matrix. Finally, we deduce some sufficient conditions implying the normality of them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信