带螺旋喷管的水轮机流道设计、计算及成形

IF 0.9 Q4 ENERGY & FUELS
B. A. Shifrin, O. O. Mil’man, A. S. Goldin, V. B. Perov
{"title":"带螺旋喷管的水轮机流道设计、计算及成形","authors":"B. A. Shifrin,&nbsp;O. O. Mil’man,&nbsp;A. S. Goldin,&nbsp;V. B. Perov","doi":"10.1134/S0040601524700617","DOIUrl":null,"url":null,"abstract":"<p>Various design versions of the rotor of hydro-steam turbines (HSTs) and their application fields are reviewed. It is shown that the design with nozzles arranged over the periphery has certain shortcomings resulting in a decreased energy efficiency, including a thermodynamically unjustified increase of pressure at the nozzle inlet, which results in excessively high velocities in the nozzle “throat,” a short period of time for which the evaporating medium resides in the nozzle divergent part, and poor aerodynamic characteristics of the peripheral area, which cause increased friction losses during the impeller rotation in a two-phase medium. A hydro-steam turbine impeller design with helical nozzle-channels is proposed. Such design has features that create prerequisites for increasing the turbine efficiency, including a longer time for which the medium resides in the nozzle, a possibility to obtain aerodynamically smooth lateral and peripheral surfaces of the impeller, and better conditions for moisture separation from the medium surrounding the rotating impeller. The conditions under which superheated water enters the impeller are considered, and statements on shaping the impeller profile part are formulated. A procedure for determining the nozzle-channel divergent part’s camber line shape is proposed proceeding from the minimal force interaction between the liquid phase fragments and channel walls. An algorithm for determining the areas of the channel divergent part’s cross sections when the velocity increase and pressure decrease patterns become monotonic in nature as the flow moves from the inlet to the outlet is developed. A solid-state 3D model of the HST four-nozzle impeller obtained in designing the turbine is presented.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"71 12","pages":"1049 - 1060"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Calculation and Shaping of the Hydro-Steam Turbine Flow Path with Helical Nozzles\",\"authors\":\"B. A. Shifrin,&nbsp;O. O. Mil’man,&nbsp;A. S. Goldin,&nbsp;V. B. Perov\",\"doi\":\"10.1134/S0040601524700617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various design versions of the rotor of hydro-steam turbines (HSTs) and their application fields are reviewed. It is shown that the design with nozzles arranged over the periphery has certain shortcomings resulting in a decreased energy efficiency, including a thermodynamically unjustified increase of pressure at the nozzle inlet, which results in excessively high velocities in the nozzle “throat,” a short period of time for which the evaporating medium resides in the nozzle divergent part, and poor aerodynamic characteristics of the peripheral area, which cause increased friction losses during the impeller rotation in a two-phase medium. A hydro-steam turbine impeller design with helical nozzle-channels is proposed. Such design has features that create prerequisites for increasing the turbine efficiency, including a longer time for which the medium resides in the nozzle, a possibility to obtain aerodynamically smooth lateral and peripheral surfaces of the impeller, and better conditions for moisture separation from the medium surrounding the rotating impeller. The conditions under which superheated water enters the impeller are considered, and statements on shaping the impeller profile part are formulated. A procedure for determining the nozzle-channel divergent part’s camber line shape is proposed proceeding from the minimal force interaction between the liquid phase fragments and channel walls. An algorithm for determining the areas of the channel divergent part’s cross sections when the velocity increase and pressure decrease patterns become monotonic in nature as the flow moves from the inlet to the outlet is developed. A solid-state 3D model of the HST four-nozzle impeller obtained in designing the turbine is presented.</p>\",\"PeriodicalId\":799,\"journal\":{\"name\":\"Thermal Engineering\",\"volume\":\"71 12\",\"pages\":\"1049 - 1060\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040601524700617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

综述了水蒸汽轮机转子的各种设计形式及其应用领域。结果表明,将喷嘴布置在外围的设计存在一定的缺点,导致能量效率降低,包括喷嘴入口压力的热力学不合理增加,导致喷嘴“喉部”的速度过高。蒸发介质在喷管发散部分停留时间短,外围区域气动特性差,导致叶轮在两相介质中旋转时摩擦损失增大。提出了一种带螺旋喷嘴通道的水轮机叶轮设计方案。这种设计的特点为提高涡轮效率创造了先决条件,包括介质在喷嘴内停留的时间更长,叶轮的横向和外围表面在空气动力学上光滑的可能性,以及与旋转叶轮周围介质的水分分离的更好条件。考虑了过热水进入叶轮的条件,并对叶轮外形部分的成型提出了说明。提出了一种从液相破片与流道壁面之间的最小力相互作用出发确定喷嘴-流道发散部分弧线形状的方法。提出了当气流从进口流向出口时,速度增减模式变为单调模式时,通道发散部分横截面面积的确定算法。介绍了在涡轮设计过程中获得的HST四喷嘴叶轮的三维固体模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design Calculation and Shaping of the Hydro-Steam Turbine Flow Path with Helical Nozzles

Design Calculation and Shaping of the Hydro-Steam Turbine Flow Path with Helical Nozzles

Various design versions of the rotor of hydro-steam turbines (HSTs) and their application fields are reviewed. It is shown that the design with nozzles arranged over the periphery has certain shortcomings resulting in a decreased energy efficiency, including a thermodynamically unjustified increase of pressure at the nozzle inlet, which results in excessively high velocities in the nozzle “throat,” a short period of time for which the evaporating medium resides in the nozzle divergent part, and poor aerodynamic characteristics of the peripheral area, which cause increased friction losses during the impeller rotation in a two-phase medium. A hydro-steam turbine impeller design with helical nozzle-channels is proposed. Such design has features that create prerequisites for increasing the turbine efficiency, including a longer time for which the medium resides in the nozzle, a possibility to obtain aerodynamically smooth lateral and peripheral surfaces of the impeller, and better conditions for moisture separation from the medium surrounding the rotating impeller. The conditions under which superheated water enters the impeller are considered, and statements on shaping the impeller profile part are formulated. A procedure for determining the nozzle-channel divergent part’s camber line shape is proposed proceeding from the minimal force interaction between the liquid phase fragments and channel walls. An algorithm for determining the areas of the channel divergent part’s cross sections when the velocity increase and pressure decrease patterns become monotonic in nature as the flow moves from the inlet to the outlet is developed. A solid-state 3D model of the HST four-nozzle impeller obtained in designing the turbine is presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信