构建聚(3,4-乙烯二氧噻吩)包封氧化铁/碳纳米管复合材料提高储能性能

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tingrui Liu, Jiahui Zhang, Zixi Zhong, Xiaofeng Huang, Jian Yu, Yuan Wang, Shaojun Yuan
{"title":"构建聚(3,4-乙烯二氧噻吩)包封氧化铁/碳纳米管复合材料提高储能性能","authors":"Tingrui Liu,&nbsp;Jiahui Zhang,&nbsp;Zixi Zhong,&nbsp;Xiaofeng Huang,&nbsp;Jian Yu,&nbsp;Yuan Wang,&nbsp;Shaojun Yuan","doi":"10.1007/s10853-025-10600-7","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocomposites consisting of conducting polymers and metal oxide are promising material in electrochemical energy storage. The design of nanostructure is regarded as an efficient strategy to improve electron and ion transfer. However, the construction of nanocomposites usually needs multistep reaction. Herein, a poly(3,4-ethylenedioxythiophene)-encapsulated iron oxide/carbon nanotube nanocomposite (Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT) is demonstrated as an efficient anode for aqueous supercapacitors. The Fe<sub>2</sub>O<sub>3</sub>/CNTs nanocomposite is firstly constructed by a rapid combustion strategy, which provided electrode a good hydrophilic ability. The PEDOT is further in situ constructed on the surface of Fe<sub>2</sub>O<sub>3</sub>/CNTs by an electrochemical polymerization process for enhancing the cycling stability. The Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT electrode delivers an enhanced ions transfer and stability during the charge/discharge process. In 1 M Na<sub>2</sub>SO<sub>4</sub>, such Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT-180 s electrode delivers a specific capacitance of 1014 mF cm<sup>−2</sup> at 2 mA cm<sup>−2</sup> and retains 89.7% of initial capacitance at 20 mA cm<sup>−2</sup> after 3000 cycles, which is superior than that of the Fe<sub>2</sub>O<sub>3</sub>/CNTs electrode (79.2%). The asymmetric aqueous supercapacitor consisted of Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT and MnO<sub>2</sub>/CC electrodes with an operating potential of 2.0 V reaches a high areal energy density of 0.207 mWh cm<sup>−2</sup> at a power density of 2.0 mW cm<sup>−2</sup>.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 4","pages":"1952 - 1963"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing energy storage by constructing poly(3,4-ethylenedioxythiophene)-encapsulated iron oxide/carbon nanotubes composites\",\"authors\":\"Tingrui Liu,&nbsp;Jiahui Zhang,&nbsp;Zixi Zhong,&nbsp;Xiaofeng Huang,&nbsp;Jian Yu,&nbsp;Yuan Wang,&nbsp;Shaojun Yuan\",\"doi\":\"10.1007/s10853-025-10600-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanocomposites consisting of conducting polymers and metal oxide are promising material in electrochemical energy storage. The design of nanostructure is regarded as an efficient strategy to improve electron and ion transfer. However, the construction of nanocomposites usually needs multistep reaction. Herein, a poly(3,4-ethylenedioxythiophene)-encapsulated iron oxide/carbon nanotube nanocomposite (Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT) is demonstrated as an efficient anode for aqueous supercapacitors. The Fe<sub>2</sub>O<sub>3</sub>/CNTs nanocomposite is firstly constructed by a rapid combustion strategy, which provided electrode a good hydrophilic ability. The PEDOT is further in situ constructed on the surface of Fe<sub>2</sub>O<sub>3</sub>/CNTs by an electrochemical polymerization process for enhancing the cycling stability. The Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT electrode delivers an enhanced ions transfer and stability during the charge/discharge process. In 1 M Na<sub>2</sub>SO<sub>4</sub>, such Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT-180 s electrode delivers a specific capacitance of 1014 mF cm<sup>−2</sup> at 2 mA cm<sup>−2</sup> and retains 89.7% of initial capacitance at 20 mA cm<sup>−2</sup> after 3000 cycles, which is superior than that of the Fe<sub>2</sub>O<sub>3</sub>/CNTs electrode (79.2%). The asymmetric aqueous supercapacitor consisted of Fe<sub>2</sub>O<sub>3</sub>/CNTs@PEDOT and MnO<sub>2</sub>/CC electrodes with an operating potential of 2.0 V reaches a high areal energy density of 0.207 mWh cm<sup>−2</sup> at a power density of 2.0 mW cm<sup>−2</sup>.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":645,\"journal\":{\"name\":\"Journal of Materials Science\",\"volume\":\"60 4\",\"pages\":\"1952 - 1963\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10853-025-10600-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10600-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由导电聚合物和金属氧化物组成的纳米复合材料是一种很有前途的电化学储能材料。纳米结构的设计被认为是改善电子和离子转移的有效策略。然而,纳米复合材料的构建通常需要多步反应。在此,聚(3,4-乙烯二氧噻吩)封装的氧化铁/碳纳米管纳米复合材料(Fe2O3/CNTs@PEDOT)被证明是一种高效的水性超级电容器阳极。首先采用快速燃烧策略构建了Fe2O3/CNTs纳米复合材料,使电极具有良好的亲水性。通过电化学聚合工艺,PEDOT进一步在Fe2O3/CNTs表面原位构建,以提高循环稳定性。Fe2O3/CNTs@PEDOT电极在充放电过程中提供了增强的离子转移和稳定性。在1 M Na2SO4中,Fe2O3/CNTs@PEDOT-180 s电极在2 mA cm - 2下的比电容为1014 mF cm - 2,在3000次循环后,其在20 mA cm - 2下的比电容仍保持89.7%,优于Fe2O3/CNTs电极的比电容(79.2%)。由Fe2O3/CNTs@PEDOT和MnO2/CC电极组成的非对称水相超级电容器,工作电位为2.0 V,功率密度为2.0 mW cm - 2,面能密度为0.207 mWh cm - 2。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing energy storage by constructing poly(3,4-ethylenedioxythiophene)-encapsulated iron oxide/carbon nanotubes composites

Nanocomposites consisting of conducting polymers and metal oxide are promising material in electrochemical energy storage. The design of nanostructure is regarded as an efficient strategy to improve electron and ion transfer. However, the construction of nanocomposites usually needs multistep reaction. Herein, a poly(3,4-ethylenedioxythiophene)-encapsulated iron oxide/carbon nanotube nanocomposite (Fe2O3/CNTs@PEDOT) is demonstrated as an efficient anode for aqueous supercapacitors. The Fe2O3/CNTs nanocomposite is firstly constructed by a rapid combustion strategy, which provided electrode a good hydrophilic ability. The PEDOT is further in situ constructed on the surface of Fe2O3/CNTs by an electrochemical polymerization process for enhancing the cycling stability. The Fe2O3/CNTs@PEDOT electrode delivers an enhanced ions transfer and stability during the charge/discharge process. In 1 M Na2SO4, such Fe2O3/CNTs@PEDOT-180 s electrode delivers a specific capacitance of 1014 mF cm−2 at 2 mA cm−2 and retains 89.7% of initial capacitance at 20 mA cm−2 after 3000 cycles, which is superior than that of the Fe2O3/CNTs electrode (79.2%). The asymmetric aqueous supercapacitor consisted of Fe2O3/CNTs@PEDOT and MnO2/CC electrodes with an operating potential of 2.0 V reaches a high areal energy density of 0.207 mWh cm−2 at a power density of 2.0 mW cm−2.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信