广义latu - igusa - todorov代数与Morita上下文

IF 0.5 4区 数学 Q3 MATHEMATICS
Marcelo Lanzilotta, José Vivero
{"title":"广义latu - igusa - todorov代数与Morita上下文","authors":"Marcelo Lanzilotta,&nbsp;José Vivero","doi":"10.1007/s10468-024-10289-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we define (special) GLIT classes and (special) GLIT algebras. We prove that GLIT algebras, which generalise Lat-Igusa-Todorov algebras, satisfy the finitistic dimension conjecture and give several properties and examples. In addition we show that special GLIT algebras are exactly those that have finite finitistic dimension. Lastly we study Morita algebras arising from a Morita context and give conditions for them to be (special) GLIT in terms of the algebras and bimodules used in their definition. As a consequence we obtain simple conditions for a triangular matrix algebra to be (special) GLIT and also prove that the tensor product of a GLIT <span>\\(\\mathbb {K}\\)</span>-algebra with a path algebra of a finite quiver without oriented cycles is GLIT.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2045 - 2066"},"PeriodicalIF":0.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10468-024-10289-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalised Lat-Igusa-Todorov Algebras and Morita Contexts\",\"authors\":\"Marcelo Lanzilotta,&nbsp;José Vivero\",\"doi\":\"10.1007/s10468-024-10289-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we define (special) GLIT classes and (special) GLIT algebras. We prove that GLIT algebras, which generalise Lat-Igusa-Todorov algebras, satisfy the finitistic dimension conjecture and give several properties and examples. In addition we show that special GLIT algebras are exactly those that have finite finitistic dimension. Lastly we study Morita algebras arising from a Morita context and give conditions for them to be (special) GLIT in terms of the algebras and bimodules used in their definition. As a consequence we obtain simple conditions for a triangular matrix algebra to be (special) GLIT and also prove that the tensor product of a GLIT <span>\\\\(\\\\mathbb {K}\\\\)</span>-algebra with a path algebra of a finite quiver without oriented cycles is GLIT.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 6\",\"pages\":\"2045 - 2066\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10468-024-10289-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10289-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10289-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文定义了(特殊)GLIT类和(特殊)GLIT代数。我们证明了推广lati - igusa - todorov代数的GLIT代数满足有限维猜想,并给出了一些性质和例子。此外,我们还证明了特殊的GLIT代数正是具有有限有限维数的代数。最后,我们研究了由Morita上下文产生的Morita代数,并从定义中使用的代数和双模的角度给出了它们是(特殊)GLIT的条件。由此,我们得到了三角矩阵代数为(特殊)GLIT的简单条件,并证明了GLIT \(\mathbb {K}\) -代数与有限无取向环振子的路径代数的张量积是GLIT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalised Lat-Igusa-Todorov Algebras and Morita Contexts

In this paper we define (special) GLIT classes and (special) GLIT algebras. We prove that GLIT algebras, which generalise Lat-Igusa-Todorov algebras, satisfy the finitistic dimension conjecture and give several properties and examples. In addition we show that special GLIT algebras are exactly those that have finite finitistic dimension. Lastly we study Morita algebras arising from a Morita context and give conditions for them to be (special) GLIT in terms of the algebras and bimodules used in their definition. As a consequence we obtain simple conditions for a triangular matrix algebra to be (special) GLIT and also prove that the tensor product of a GLIT \(\mathbb {K}\)-algebra with a path algebra of a finite quiver without oriented cycles is GLIT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信