{"title":"氟化单分散微孔微球:形成机制、组装和分子分离","authors":"Si-Yu Wang, Xin-Rui Xu, Xin-Xin Qiu, Xiao-Li Huang, Xin-Qi Wang, Zhi-Yong Chen","doi":"10.1007/s10118-024-3239-9","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of monodisperse microporous organic microspheres is deemed a challenging issue, primarily due to the difficulty in achieving both high microporosity and uniformity within the microspheres. In this study, a series of fluorinated monodisperse microporous microspheres are fabricated by solvothermal precipitation polymerization. The resulting fluorous methacrylate-based microspheres achieved higher than 400 m<sup>2</sup>/g surface area, along with a yield of over 90% for the microspheres. Through comprehensive characterization and simulation methods, we discovered that the introduction of fluorous methacrylate monomers at high loading levels is the key factor contributing to the formation of the microporosity within the microspheres. The controlled temperature profile was found to be advantageous for achieving a high yield of microspheres and increased uniformity. Two-dimensional assemblies of these fluorinated microsphere arrays exhibited superhydrophobicity, superolephilicity, and water sliding angles below 10°. Furthermore, a three-dimensional assembly of the fluorinated microporous microsphere in a chromatographic column demonstrated significant improvement in the separation of Engelhardt agent compared to commercial columns. Our work offers a novel approach to constructing fluorinated monodisperse microporous microspheres for advanced applications.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 1","pages":"162 - 176"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorinated Monodisperse Microporous Microspheres: Formation Mechanism, Assembly, and Molecular Separation\",\"authors\":\"Si-Yu Wang, Xin-Rui Xu, Xin-Xin Qiu, Xiao-Li Huang, Xin-Qi Wang, Zhi-Yong Chen\",\"doi\":\"10.1007/s10118-024-3239-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The construction of monodisperse microporous organic microspheres is deemed a challenging issue, primarily due to the difficulty in achieving both high microporosity and uniformity within the microspheres. In this study, a series of fluorinated monodisperse microporous microspheres are fabricated by solvothermal precipitation polymerization. The resulting fluorous methacrylate-based microspheres achieved higher than 400 m<sup>2</sup>/g surface area, along with a yield of over 90% for the microspheres. Through comprehensive characterization and simulation methods, we discovered that the introduction of fluorous methacrylate monomers at high loading levels is the key factor contributing to the formation of the microporosity within the microspheres. The controlled temperature profile was found to be advantageous for achieving a high yield of microspheres and increased uniformity. Two-dimensional assemblies of these fluorinated microsphere arrays exhibited superhydrophobicity, superolephilicity, and water sliding angles below 10°. Furthermore, a three-dimensional assembly of the fluorinated microporous microsphere in a chromatographic column demonstrated significant improvement in the separation of Engelhardt agent compared to commercial columns. Our work offers a novel approach to constructing fluorinated monodisperse microporous microspheres for advanced applications.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 1\",\"pages\":\"162 - 176\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3239-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3239-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Fluorinated Monodisperse Microporous Microspheres: Formation Mechanism, Assembly, and Molecular Separation
The construction of monodisperse microporous organic microspheres is deemed a challenging issue, primarily due to the difficulty in achieving both high microporosity and uniformity within the microspheres. In this study, a series of fluorinated monodisperse microporous microspheres are fabricated by solvothermal precipitation polymerization. The resulting fluorous methacrylate-based microspheres achieved higher than 400 m2/g surface area, along with a yield of over 90% for the microspheres. Through comprehensive characterization and simulation methods, we discovered that the introduction of fluorous methacrylate monomers at high loading levels is the key factor contributing to the formation of the microporosity within the microspheres. The controlled temperature profile was found to be advantageous for achieving a high yield of microspheres and increased uniformity. Two-dimensional assemblies of these fluorinated microsphere arrays exhibited superhydrophobicity, superolephilicity, and water sliding angles below 10°. Furthermore, a three-dimensional assembly of the fluorinated microporous microsphere in a chromatographic column demonstrated significant improvement in the separation of Engelhardt agent compared to commercial columns. Our work offers a novel approach to constructing fluorinated monodisperse microporous microspheres for advanced applications.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.