Dimitris G. Giovanis, Alexandros Taflanidis, Michael D. Shields
{"title":"基于降维的代理模型加速增量动态分析中的不确定性量化","authors":"Dimitris G. Giovanis, Alexandros Taflanidis, Michael D. Shields","doi":"10.1007/s10518-024-02080-y","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a surrogate modeling framework based on dimension reduction to facilitate the quantification of seismic risk of structural systems in performance-based earthquake engineering. The framework adopts incremental dynamic analysis (IDA) for addressing hazard variability, and promotes significant computational efficiency improvement for propagating epistemic uncertainties associated with the structural models. It utilizes both linear and nonlinear dimension reduction approaches, equipped with inverse mappings, to learn a functional between the input parameter space (e.g., the epistemic uncertainties of the structure) to the high-dimensional output space created through the IDA implementation across different ground motions and seismic intensity levels. Polynomial chaos expansion is adopted as the surrogate model to learn this functional in the reduced space. A nine-story steel moment-resisting frame with uncertain structural properties is used as a testbed. We select the seismic fragility curves as a measure of the structure’s seismic performance, since it provides an estimate of the probability of entering specified damage states for given levels of ground shaking.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 1","pages":"391 - 410"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating uncertainty quantification in incremental dynamic analysis using dimension reduction-based surrogate modeling\",\"authors\":\"Dimitris G. Giovanis, Alexandros Taflanidis, Michael D. Shields\",\"doi\":\"10.1007/s10518-024-02080-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a surrogate modeling framework based on dimension reduction to facilitate the quantification of seismic risk of structural systems in performance-based earthquake engineering. The framework adopts incremental dynamic analysis (IDA) for addressing hazard variability, and promotes significant computational efficiency improvement for propagating epistemic uncertainties associated with the structural models. It utilizes both linear and nonlinear dimension reduction approaches, equipped with inverse mappings, to learn a functional between the input parameter space (e.g., the epistemic uncertainties of the structure) to the high-dimensional output space created through the IDA implementation across different ground motions and seismic intensity levels. Polynomial chaos expansion is adopted as the surrogate model to learn this functional in the reduced space. A nine-story steel moment-resisting frame with uncertain structural properties is used as a testbed. We select the seismic fragility curves as a measure of the structure’s seismic performance, since it provides an estimate of the probability of entering specified damage states for given levels of ground shaking.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"23 1\",\"pages\":\"391 - 410\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-02080-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-02080-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Accelerating uncertainty quantification in incremental dynamic analysis using dimension reduction-based surrogate modeling
We propose a surrogate modeling framework based on dimension reduction to facilitate the quantification of seismic risk of structural systems in performance-based earthquake engineering. The framework adopts incremental dynamic analysis (IDA) for addressing hazard variability, and promotes significant computational efficiency improvement for propagating epistemic uncertainties associated with the structural models. It utilizes both linear and nonlinear dimension reduction approaches, equipped with inverse mappings, to learn a functional between the input parameter space (e.g., the epistemic uncertainties of the structure) to the high-dimensional output space created through the IDA implementation across different ground motions and seismic intensity levels. Polynomial chaos expansion is adopted as the surrogate model to learn this functional in the reduced space. A nine-story steel moment-resisting frame with uncertain structural properties is used as a testbed. We select the seismic fragility curves as a measure of the structure’s seismic performance, since it provides an estimate of the probability of entering specified damage states for given levels of ground shaking.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.