{"title":"Doob不等式、Burkholder-Gundy不等式和鞅局部Morrey空间上的鞅变换","authors":"K. -P. Ho","doi":"10.1007/s10474-024-01485-0","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the martingale local Morrey spaces. We establish the Doob's inequality, the Burkholder–Gundy inequality and the boundedness of the martingale transforms to martingale local Morrey spaces defined on complete probability spaces.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"174 2","pages":"312 - 322"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doob's inequality, Burkholder–Gundy inequality and martingale transforms on martingale local Morrey spaces\",\"authors\":\"K. -P. Ho\",\"doi\":\"10.1007/s10474-024-01485-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the martingale local Morrey spaces. We establish the Doob's inequality, the Burkholder–Gundy inequality and the boundedness of the martingale transforms to martingale local Morrey spaces defined on complete probability spaces.</p></div>\",\"PeriodicalId\":50894,\"journal\":{\"name\":\"Acta Mathematica Hungarica\",\"volume\":\"174 2\",\"pages\":\"312 - 322\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10474-024-01485-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01485-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Doob's inequality, Burkholder–Gundy inequality and martingale transforms on martingale local Morrey spaces
We introduce the martingale local Morrey spaces. We establish the Doob's inequality, the Burkholder–Gundy inequality and the boundedness of the martingale transforms to martingale local Morrey spaces defined on complete probability spaces.
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.