{"title":"黑洞合并的壳层方法","authors":"Katsuki Aoki, Andrea Cristofoli, Yu-tin Huang","doi":"10.1007/JHEP01(2025)066","DOIUrl":null,"url":null,"abstract":"<p>We develop an on-shell approach to study black hole mergers. Since, asymptotically, the initial and final states can be described by point-like spinning particles, we propose a massive three-point amplitude for the merger of two Schwarzschild black holes into a Kerr black hole. This three-point amplitude and the spectral function of the final state are fully determined by kinematics and the model-independent input about the black hole merger which is described by a complete absorption process. Using the Kosower-Maybee-O’Connell (KMOC) formalism, we then reproduce the classical conservation laws for momentum and angular momentum after the merger. As an application, we use the proposed three-point to compute the graviton emission amplitude, from which we extract the merger waveform to all orders in spin but leading in gravitational coupling. Up to sub-subleading order in spin, this matches the classical soft graviton theorem. We conclude with a comparison to black hole perturbation theory, which gives complementary amplitudes which are non-perturbative in the gravitational coupling but to leading order in the extreme mass ratio limit. This also highlights how boundary conditions on a Schwarzschild background can be used to rederive the proposed on-shell amplitudes for merger processes.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)066.pdf","citationCount":"0","resultStr":"{\"title\":\"On-shell approach to black hole mergers\",\"authors\":\"Katsuki Aoki, Andrea Cristofoli, Yu-tin Huang\",\"doi\":\"10.1007/JHEP01(2025)066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop an on-shell approach to study black hole mergers. Since, asymptotically, the initial and final states can be described by point-like spinning particles, we propose a massive three-point amplitude for the merger of two Schwarzschild black holes into a Kerr black hole. This three-point amplitude and the spectral function of the final state are fully determined by kinematics and the model-independent input about the black hole merger which is described by a complete absorption process. Using the Kosower-Maybee-O’Connell (KMOC) formalism, we then reproduce the classical conservation laws for momentum and angular momentum after the merger. As an application, we use the proposed three-point to compute the graviton emission amplitude, from which we extract the merger waveform to all orders in spin but leading in gravitational coupling. Up to sub-subleading order in spin, this matches the classical soft graviton theorem. We conclude with a comparison to black hole perturbation theory, which gives complementary amplitudes which are non-perturbative in the gravitational coupling but to leading order in the extreme mass ratio limit. This also highlights how boundary conditions on a Schwarzschild background can be used to rederive the proposed on-shell amplitudes for merger processes.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)066.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP01(2025)066\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)066","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We develop an on-shell approach to study black hole mergers. Since, asymptotically, the initial and final states can be described by point-like spinning particles, we propose a massive three-point amplitude for the merger of two Schwarzschild black holes into a Kerr black hole. This three-point amplitude and the spectral function of the final state are fully determined by kinematics and the model-independent input about the black hole merger which is described by a complete absorption process. Using the Kosower-Maybee-O’Connell (KMOC) formalism, we then reproduce the classical conservation laws for momentum and angular momentum after the merger. As an application, we use the proposed three-point to compute the graviton emission amplitude, from which we extract the merger waveform to all orders in spin but leading in gravitational coupling. Up to sub-subleading order in spin, this matches the classical soft graviton theorem. We conclude with a comparison to black hole perturbation theory, which gives complementary amplitudes which are non-perturbative in the gravitational coupling but to leading order in the extreme mass ratio limit. This also highlights how boundary conditions on a Schwarzschild background can be used to rederive the proposed on-shell amplitudes for merger processes.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).