方程量子拟群

IF 0.5 4区 数学 Q3 MATHEMATICS
Jonathan D. H. Smith
{"title":"方程量子拟群","authors":"Jonathan D. H. Smith","doi":"10.1007/s10468-024-10300-x","DOIUrl":null,"url":null,"abstract":"<div><p>As a self-dual framework to unify the study of quasigroups and Hopf algebras, quantum quasigroups are defined using a quantum analogue of the combinatorial approach to classical quasigroups, merely requiring invertibility of the left and right composites. In this paper, quantum quasigroups are redefined with a quantum analogue of the equational approach to classical quasigroups. Here, the left and right composites of auxiliary quantum quasigroups participate in diagrams whose commutativity witnesses the required invertibilities. Whenever the original and two auxiliary quantum quasigroups appear on an equal footing, the triality symmetry of the language of equational quasigroups is replicated. In particular, the problem arises as to when this triality emerges in the Hopf algebra context.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 6","pages":"2355 - 2387"},"PeriodicalIF":0.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equational Quantum Quasigroups\",\"authors\":\"Jonathan D. H. Smith\",\"doi\":\"10.1007/s10468-024-10300-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a self-dual framework to unify the study of quasigroups and Hopf algebras, quantum quasigroups are defined using a quantum analogue of the combinatorial approach to classical quasigroups, merely requiring invertibility of the left and right composites. In this paper, quantum quasigroups are redefined with a quantum analogue of the equational approach to classical quasigroups. Here, the left and right composites of auxiliary quantum quasigroups participate in diagrams whose commutativity witnesses the required invertibilities. Whenever the original and two auxiliary quantum quasigroups appear on an equal footing, the triality symmetry of the language of equational quasigroups is replicated. In particular, the problem arises as to when this triality emerges in the Hopf algebra context.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 6\",\"pages\":\"2355 - 2387\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10300-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10300-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作为统一准群和Hopf代数研究的自对偶框架,量子拟群是用经典拟群的组合方法的量子模拟来定义的,只要求左右复合的可逆性。本文用经典拟群的方程方法的量子模拟重新定义了量子拟群。在这里,辅助量子拟群的左右复合参与到图中,其交换性见证了所需的可逆性。当原量子拟群和两个辅助量子拟群在同等基础上出现时,等价拟群语言的三性对称性被复制。特别地,这个问题出现在Hopf代数的语境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equational Quantum Quasigroups

As a self-dual framework to unify the study of quasigroups and Hopf algebras, quantum quasigroups are defined using a quantum analogue of the combinatorial approach to classical quasigroups, merely requiring invertibility of the left and right composites. In this paper, quantum quasigroups are redefined with a quantum analogue of the equational approach to classical quasigroups. Here, the left and right composites of auxiliary quantum quasigroups participate in diagrams whose commutativity witnesses the required invertibilities. Whenever the original and two auxiliary quantum quasigroups appear on an equal footing, the triality symmetry of the language of equational quasigroups is replicated. In particular, the problem arises as to when this triality emerges in the Hopf algebra context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信