利用废锂离子电池生产石墨-碳纳米管复合材料作为锌-空气电池中的氧电催化剂

Reio Praats, Jani Sainio, Milla Vikberg, Lassi Klemettinen, Benjamin P. Wilson, Mari Lundström, Ivar Kruusenberg and Kerli Liivand
{"title":"利用废锂离子电池生产石墨-碳纳米管复合材料作为锌-空气电池中的氧电催化剂","authors":"Reio Praats, Jani Sainio, Milla Vikberg, Lassi Klemettinen, Benjamin P. Wilson, Mari Lundström, Ivar Kruusenberg and Kerli Liivand","doi":"10.1039/D4SU00526K","DOIUrl":null,"url":null,"abstract":"<p >The increasing global demand for energy has led to a rise in the usage of lithium-ion batteries (LIBs), which ultimately has resulted in an ever-increasing volume of related end-of-life batteries. Consequently, recycling has become indispensable to salvage the valuable resources contained within these energy storage devices. While various methods have been developed for the recovery of valuable cathode metals from spent LIBs, the anode's active material, graphite, is mostly lost from circulation. This study introduces an innovative method to valorize black mass leach residue, a waste product from industrial hydrometallurgical LIB recycling processes. Predominantly composed of graphite and minor metal residues, this material can be converted into a valuable bifunctional oxygen electrocatalyst. This transformation is achieved by doping the leach residue with nitrogen and through the incorporation of carbon nanotubes into the modified matrix, to enhance the surface area and conductivity of the produced electrocatalyst. These novel catalyst materials can enhance the oxygen reduction reaction and oxygen evolution reaction in zinc–air batteries (ZAB). The best catalyst material exhibited a commendable power density of 97 mW cm<small><sup>−2</sup></small> in ZAB, demonstrating stable performance over 70 hours of continuous charge–discharge cycling. This research represents a significant advancement in the shrewd utilization of LIB recycling waste, which further enhances the goal of closed-loop materials circularity.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 1","pages":" 546-556"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00526k?page=search","citationCount":"0","resultStr":"{\"title\":\"Utilizing waste lithium-ion batteries for the production of graphite-carbon nanotube composites as oxygen electrocatalysts in zinc–air batteries†\",\"authors\":\"Reio Praats, Jani Sainio, Milla Vikberg, Lassi Klemettinen, Benjamin P. Wilson, Mari Lundström, Ivar Kruusenberg and Kerli Liivand\",\"doi\":\"10.1039/D4SU00526K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The increasing global demand for energy has led to a rise in the usage of lithium-ion batteries (LIBs), which ultimately has resulted in an ever-increasing volume of related end-of-life batteries. Consequently, recycling has become indispensable to salvage the valuable resources contained within these energy storage devices. While various methods have been developed for the recovery of valuable cathode metals from spent LIBs, the anode's active material, graphite, is mostly lost from circulation. This study introduces an innovative method to valorize black mass leach residue, a waste product from industrial hydrometallurgical LIB recycling processes. Predominantly composed of graphite and minor metal residues, this material can be converted into a valuable bifunctional oxygen electrocatalyst. This transformation is achieved by doping the leach residue with nitrogen and through the incorporation of carbon nanotubes into the modified matrix, to enhance the surface area and conductivity of the produced electrocatalyst. These novel catalyst materials can enhance the oxygen reduction reaction and oxygen evolution reaction in zinc–air batteries (ZAB). The best catalyst material exhibited a commendable power density of 97 mW cm<small><sup>−2</sup></small> in ZAB, demonstrating stable performance over 70 hours of continuous charge–discharge cycling. This research represents a significant advancement in the shrewd utilization of LIB recycling waste, which further enhances the goal of closed-loop materials circularity.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 1\",\"pages\":\" 546-556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00526k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00526k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00526k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球能源需求的增长导致锂离子电池(LIBs)使用量的增加,最终导致相关报废电池的数量不断增加。因此,回收已成为不可缺少的,以挽救这些能源存储设备中包含的宝贵资源。虽然已经开发了各种方法从废lib中回收有价值的阴极金属,但阳极的活性材料石墨大部分在循环中丢失。本研究介绍了一种创新的方法对工业湿法冶金LIB回收过程中产生的黑团浸渣进行估价。这种材料主要由石墨和少量金属残留物组成,可以转化为有价值的双功能氧电催化剂。这种转化是通过在浸出渣中掺杂氮和将碳纳米管掺入修饰的基质中来实现的,以提高所生产的电催化剂的表面积和导电性。这些新型催化剂材料可以增强锌-空气电池(ZAB)中的氧还原反应和析氧反应。最佳催化剂材料在ZAB中表现出令人称赞的功率密度为97 mW cm−2,在连续充放电循环70小时内表现出稳定的性能。本研究在锂离子电池回收废弃物的精细化利用方面取得了重大进展,进一步实现了材料闭环循环的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Utilizing waste lithium-ion batteries for the production of graphite-carbon nanotube composites as oxygen electrocatalysts in zinc–air batteries†

Utilizing waste lithium-ion batteries for the production of graphite-carbon nanotube composites as oxygen electrocatalysts in zinc–air batteries†

The increasing global demand for energy has led to a rise in the usage of lithium-ion batteries (LIBs), which ultimately has resulted in an ever-increasing volume of related end-of-life batteries. Consequently, recycling has become indispensable to salvage the valuable resources contained within these energy storage devices. While various methods have been developed for the recovery of valuable cathode metals from spent LIBs, the anode's active material, graphite, is mostly lost from circulation. This study introduces an innovative method to valorize black mass leach residue, a waste product from industrial hydrometallurgical LIB recycling processes. Predominantly composed of graphite and minor metal residues, this material can be converted into a valuable bifunctional oxygen electrocatalyst. This transformation is achieved by doping the leach residue with nitrogen and through the incorporation of carbon nanotubes into the modified matrix, to enhance the surface area and conductivity of the produced electrocatalyst. These novel catalyst materials can enhance the oxygen reduction reaction and oxygen evolution reaction in zinc–air batteries (ZAB). The best catalyst material exhibited a commendable power density of 97 mW cm−2 in ZAB, demonstrating stable performance over 70 hours of continuous charge–discharge cycling. This research represents a significant advancement in the shrewd utilization of LIB recycling waste, which further enhances the goal of closed-loop materials circularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信