仿生味觉生物传感器及其应用研究进展

IF 3.5 Q2 CHEMISTRY, ANALYTICAL
Jialu Kang, Jiejing Liu, Yufei Geng, Yuxuan Yuan, Shuge Liu, Yushuo Tan, Liping Du and Chunsheng Wu
{"title":"仿生味觉生物传感器及其应用研究进展","authors":"Jialu Kang, Jiejing Liu, Yufei Geng, Yuxuan Yuan, Shuge Liu, Yushuo Tan, Liping Du and Chunsheng Wu","doi":"10.1039/D4SD00311J","DOIUrl":null,"url":null,"abstract":"<p >The biological taste sensing system has a sensitive perception ability for taste substances (tastants) and is considered as one of the most efficient chemical sensing systems in nature. With the rapid development of human society, biomimetic taste-based biosensors have become increasingly important to improve human life quality and ensure human health, and have been widely applied in many fields such as food safety, biomedicine, and public health. In recent years, researchers have been devoted to developing a new type of chemical sensing system. Among them, biomimetic olfactory-based biosensors have shown promising prospects and potential applications compared to traditional chemical sensors due to the utilization of well-developed natural molecular recognition mechanisms. Biomimetic taste-based biosensors usually employ biologically originated taste cells, taste receptors, taste buds, taste organoids and lipid membranes as sensitive elements, combined with secondary transducers to achieve specific and sensitive detection of tastants in order to obtain comparable detection performance to that of the biological taste system. This review summarizes the most recent advances in biomimetic taste-based biosensors based on biological taste sensing elements. First, the basic principle of biomimetic taste-based biosensors is briefly introduced. Then, the system composition and development of biomimetic taste-based biosensors are outlined and discussed in detail, with a focus on the preparation technology of sensitive elements and their coupling with transducers. In addition, the performance of biomimetic taste-based biosensors and their applications in food quality testing and basic and clinical research are summarized. Finally, the current challenges and development trends of biomimetic taste-based biosensors are proposed and discussed.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 1","pages":" 24-34"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00311j?page=search","citationCount":"0","resultStr":"{\"title\":\"Recent advances in biomimetic taste-based biosensors and their applications\",\"authors\":\"Jialu Kang, Jiejing Liu, Yufei Geng, Yuxuan Yuan, Shuge Liu, Yushuo Tan, Liping Du and Chunsheng Wu\",\"doi\":\"10.1039/D4SD00311J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The biological taste sensing system has a sensitive perception ability for taste substances (tastants) and is considered as one of the most efficient chemical sensing systems in nature. With the rapid development of human society, biomimetic taste-based biosensors have become increasingly important to improve human life quality and ensure human health, and have been widely applied in many fields such as food safety, biomedicine, and public health. In recent years, researchers have been devoted to developing a new type of chemical sensing system. Among them, biomimetic olfactory-based biosensors have shown promising prospects and potential applications compared to traditional chemical sensors due to the utilization of well-developed natural molecular recognition mechanisms. Biomimetic taste-based biosensors usually employ biologically originated taste cells, taste receptors, taste buds, taste organoids and lipid membranes as sensitive elements, combined with secondary transducers to achieve specific and sensitive detection of tastants in order to obtain comparable detection performance to that of the biological taste system. This review summarizes the most recent advances in biomimetic taste-based biosensors based on biological taste sensing elements. First, the basic principle of biomimetic taste-based biosensors is briefly introduced. Then, the system composition and development of biomimetic taste-based biosensors are outlined and discussed in detail, with a focus on the preparation technology of sensitive elements and their coupling with transducers. In addition, the performance of biomimetic taste-based biosensors and their applications in food quality testing and basic and clinical research are summarized. Finally, the current challenges and development trends of biomimetic taste-based biosensors are proposed and discussed.</p>\",\"PeriodicalId\":74786,\"journal\":{\"name\":\"Sensors & diagnostics\",\"volume\":\" 1\",\"pages\":\" 24-34\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00311j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors & diagnostics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00311j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00311j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

生物味觉感知系统对味觉物质(尝味剂)具有灵敏的感知能力,被认为是自然界中最有效的化学感知系统之一。随着人类社会的快速发展,基于仿生味觉的生物传感器对提高人类生活质量、保障人类健康的重要性日益突出,在食品安全、生物医学、公共卫生等诸多领域得到了广泛的应用。近年来,研究人员一直致力于开发一种新型的化学传感系统。其中,基于仿生嗅觉的生物传感器由于利用了成熟的天然分子识别机制,与传统的化学传感器相比,具有广阔的应用前景。仿生味觉生物传感器通常采用生物来源的味觉细胞、味觉受体、味蕾、味觉类器官和脂质膜作为敏感元件,结合二级换能器实现对味觉物质的特异性和敏感性检测,以获得与生物味觉系统相当的检测性能。本文综述了基于生物味觉传感元件的仿生味觉传感器的最新研究进展。首先,简要介绍了仿生味觉传感器的基本原理。然后,对仿生味觉传感器的系统组成和发展进行了详细的概述和讨论,重点介绍了敏感元件的制备技术及其与传感器的耦合。综述了仿生味觉传感器的性能及其在食品质量检测、基础和临床研究中的应用。最后,对仿生味觉传感器面临的挑战和发展趋势进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent advances in biomimetic taste-based biosensors and their applications

Recent advances in biomimetic taste-based biosensors and their applications

The biological taste sensing system has a sensitive perception ability for taste substances (tastants) and is considered as one of the most efficient chemical sensing systems in nature. With the rapid development of human society, biomimetic taste-based biosensors have become increasingly important to improve human life quality and ensure human health, and have been widely applied in many fields such as food safety, biomedicine, and public health. In recent years, researchers have been devoted to developing a new type of chemical sensing system. Among them, biomimetic olfactory-based biosensors have shown promising prospects and potential applications compared to traditional chemical sensors due to the utilization of well-developed natural molecular recognition mechanisms. Biomimetic taste-based biosensors usually employ biologically originated taste cells, taste receptors, taste buds, taste organoids and lipid membranes as sensitive elements, combined with secondary transducers to achieve specific and sensitive detection of tastants in order to obtain comparable detection performance to that of the biological taste system. This review summarizes the most recent advances in biomimetic taste-based biosensors based on biological taste sensing elements. First, the basic principle of biomimetic taste-based biosensors is briefly introduced. Then, the system composition and development of biomimetic taste-based biosensors are outlined and discussed in detail, with a focus on the preparation technology of sensitive elements and their coupling with transducers. In addition, the performance of biomimetic taste-based biosensors and their applications in food quality testing and basic and clinical research are summarized. Finally, the current challenges and development trends of biomimetic taste-based biosensors are proposed and discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信