任务特异性离子液体和超声照射:一个成功的策略,以驱动醇解聚碳酸酯†

Francesca D'Anna, Giovanna Raia, Gianluca Di Cara, Patrizia Cancemi and Salvatore Marullo
{"title":"任务特异性离子液体和超声照射:一个成功的策略,以驱动醇解聚碳酸酯†","authors":"Francesca D'Anna, Giovanna Raia, Gianluca Di Cara, Patrizia Cancemi and Salvatore Marullo","doi":"10.1039/D4SU00301B","DOIUrl":null,"url":null,"abstract":"<p >The release of plastics into the environment is a pressing issue of the modern society, and the identification of strategies for their recycling is a challenge in chemical research. This work analyses the possibility of combining the efficiency of task-specific ionic liquids (TSILs) with the effect of ultrasound irradiation (US) to perform the alcoholysis of polycarbonate (BPA-PC). Aliphatic cations were combined with environmentally friendly basic anions to obtain TSILs able to perform the process at room temperature. Different operational parameters were optimized. The process performance was evaluated using a holistic approach to green chemistry, and the best catalysts were tested for their cytotoxicity toward two different normal cell lines, namely, the mammary epithelium (HB2) and retinal pigment epithelium (hTERT-RPE-1) cell lines. The collected data demonstrated that the best catalyst performed the process at 30 °C with an irradiation time of 90 minutes, offering conversion and yield values higher than 80%. Interestingly, it could be used to process post-consumer samples, like a digital CD and a BPA-PC sheet, providing results comparable to the ones obtained using pristine BPA-PC and bisphenol A with good purity. Furthermore, the proposed protocol could be scaled up without a drop in performance.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 1","pages":" 580-591"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00301b?page=search","citationCount":"0","resultStr":"{\"title\":\"Task-specific ionic liquids and ultrasound irradiation: a successful strategy to drive the alcoholysis of polycarbonate†\",\"authors\":\"Francesca D'Anna, Giovanna Raia, Gianluca Di Cara, Patrizia Cancemi and Salvatore Marullo\",\"doi\":\"10.1039/D4SU00301B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The release of plastics into the environment is a pressing issue of the modern society, and the identification of strategies for their recycling is a challenge in chemical research. This work analyses the possibility of combining the efficiency of task-specific ionic liquids (TSILs) with the effect of ultrasound irradiation (US) to perform the alcoholysis of polycarbonate (BPA-PC). Aliphatic cations were combined with environmentally friendly basic anions to obtain TSILs able to perform the process at room temperature. Different operational parameters were optimized. The process performance was evaluated using a holistic approach to green chemistry, and the best catalysts were tested for their cytotoxicity toward two different normal cell lines, namely, the mammary epithelium (HB2) and retinal pigment epithelium (hTERT-RPE-1) cell lines. The collected data demonstrated that the best catalyst performed the process at 30 °C with an irradiation time of 90 minutes, offering conversion and yield values higher than 80%. Interestingly, it could be used to process post-consumer samples, like a digital CD and a BPA-PC sheet, providing results comparable to the ones obtained using pristine BPA-PC and bisphenol A with good purity. Furthermore, the proposed protocol could be scaled up without a drop in performance.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 1\",\"pages\":\" 580-591\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00301b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00301b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00301b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

塑料排放到环境中是现代社会面临的一个紧迫问题,确定塑料回收利用的策略是化学研究中的一个挑战。本工作分析了任务特异性离子液体(TSILs)的效率与超声照射(US)效应相结合进行聚碳酸酯(BPA-PC)醇解的可能性。脂肪族阳离子与环境友好的碱性阴离子结合,得到能够在室温下进行该过程的TSILs。对不同的操作参数进行了优化。采用绿色化学的整体方法评估了该工艺的性能,并测试了最佳催化剂对两种不同的正常细胞系,即乳腺上皮(HB2)和视网膜色素上皮(hTERT-RPE-1)细胞系的细胞毒性。收集的数据表明,最佳催化剂在30°C下进行该过程,照射时间为90分钟,转化率和产率高于80%。有趣的是,它可以用于处理消费后的样品,如数字CD和BPA-PC片,提供的结果可与使用纯度高的原始BPA-PC和双酚a获得的结果相媲美。此外,所提出的协议可以在不降低性能的情况下进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Task-specific ionic liquids and ultrasound irradiation: a successful strategy to drive the alcoholysis of polycarbonate†

Task-specific ionic liquids and ultrasound irradiation: a successful strategy to drive the alcoholysis of polycarbonate†

The release of plastics into the environment is a pressing issue of the modern society, and the identification of strategies for their recycling is a challenge in chemical research. This work analyses the possibility of combining the efficiency of task-specific ionic liquids (TSILs) with the effect of ultrasound irradiation (US) to perform the alcoholysis of polycarbonate (BPA-PC). Aliphatic cations were combined with environmentally friendly basic anions to obtain TSILs able to perform the process at room temperature. Different operational parameters were optimized. The process performance was evaluated using a holistic approach to green chemistry, and the best catalysts were tested for their cytotoxicity toward two different normal cell lines, namely, the mammary epithelium (HB2) and retinal pigment epithelium (hTERT-RPE-1) cell lines. The collected data demonstrated that the best catalyst performed the process at 30 °C with an irradiation time of 90 minutes, offering conversion and yield values higher than 80%. Interestingly, it could be used to process post-consumer samples, like a digital CD and a BPA-PC sheet, providing results comparable to the ones obtained using pristine BPA-PC and bisphenol A with good purity. Furthermore, the proposed protocol could be scaled up without a drop in performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信