可充电镁电池用纳米MgMn2O4和α-MnO2阴极的草酸盐辅助Fe2O3表面功能化研究

Masanao Ishijima, Arisa Omata, Kiyoshi Kanamura, Toshihiko Mandai, Xiatong Ye, Tetsu Ichitsubo and Koichi Kajihara
{"title":"可充电镁电池用纳米MgMn2O4和α-MnO2阴极的草酸盐辅助Fe2O3表面功能化研究","authors":"Masanao Ishijima, Arisa Omata, Kiyoshi Kanamura, Toshihiko Mandai, Xiatong Ye, Tetsu Ichitsubo and Koichi Kajihara","doi":"10.1039/D4LF00290C","DOIUrl":null,"url":null,"abstract":"<p >Mn-based transition metal oxide nanoparticles are promising candidates as cathode active materials for rechargeable magnesium batteries, but their high catalytic activity for oxidative electrolyte decomposition and large surface area deteriorate their cycle performance. A recent study [Yagi <em>et al.</em>, <em>J. Mater. Chem. A</em>, 2021, <strong>9</strong>, 26401–26409] demonstrated that the catalytic activity was less prominent in Fe-based oxides than in other transition metal oxides, containing Mn. Fe-based oxides show low catalytic activity for oxidative electrolyte decomposition compared with Mn-based congeners. The strong capability of oxalate ions for bridging transition metal ions was utilised to form thin, uniform Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> layers on nanoparticles of MgMn<small><sub>2</sub></small>O<small><sub>4</sub></small> and α-MnO<small><sub>2</sub></small>. The resulting Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> layers effectively suppressed side reactions during insertion and extraction of the Mg<small><sup>2+</sup></small> ions and improved the capacity retention and cycle performance.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 1","pages":" 179-184"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00290c?page=search","citationCount":"0","resultStr":"{\"title\":\"Oxalate-assisted Fe2O3 surface functionalization of nanosized MgMn2O4 and α-MnO2 cathodes for rechargeable magnesium batteries†\",\"authors\":\"Masanao Ishijima, Arisa Omata, Kiyoshi Kanamura, Toshihiko Mandai, Xiatong Ye, Tetsu Ichitsubo and Koichi Kajihara\",\"doi\":\"10.1039/D4LF00290C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mn-based transition metal oxide nanoparticles are promising candidates as cathode active materials for rechargeable magnesium batteries, but their high catalytic activity for oxidative electrolyte decomposition and large surface area deteriorate their cycle performance. A recent study [Yagi <em>et al.</em>, <em>J. Mater. Chem. A</em>, 2021, <strong>9</strong>, 26401–26409] demonstrated that the catalytic activity was less prominent in Fe-based oxides than in other transition metal oxides, containing Mn. Fe-based oxides show low catalytic activity for oxidative electrolyte decomposition compared with Mn-based congeners. The strong capability of oxalate ions for bridging transition metal ions was utilised to form thin, uniform Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> layers on nanoparticles of MgMn<small><sub>2</sub></small>O<small><sub>4</sub></small> and α-MnO<small><sub>2</sub></small>. The resulting Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> layers effectively suppressed side reactions during insertion and extraction of the Mg<small><sup>2+</sup></small> ions and improved the capacity retention and cycle performance.</p>\",\"PeriodicalId\":101138,\"journal\":{\"name\":\"RSC Applied Interfaces\",\"volume\":\" 1\",\"pages\":\" 179-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/lf/d4lf00290c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d4lf00290c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lf/d4lf00290c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锰基过渡金属氧化物纳米颗粒是可充电镁电池极具潜力的正极活性材料,但其较高的氧化电解质分解催化活性和较大的比表面积影响了其循环性能。最近的一项研究[Yagi et al., J. Mater.]化学。A, 2021, 9, 26401-26409]表明,与其他含锰的过渡金属氧化物相比,铁基氧化物的催化活性不那么突出。与锰基氧化物相比,铁基氧化物对氧化电解质分解的催化活性较低。利用草酸盐离子桥接过渡金属离子的强大能力,在MgMn2O4和α-MnO2纳米颗粒上形成了薄而均匀的Fe2O3层。生成的Fe2O3层有效抑制了Mg2+离子插入和萃取过程中的副反应,提高了容量保持和循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxalate-assisted Fe2O3 surface functionalization of nanosized MgMn2O4 and α-MnO2 cathodes for rechargeable magnesium batteries†

Oxalate-assisted Fe2O3 surface functionalization of nanosized MgMn2O4 and α-MnO2 cathodes for rechargeable magnesium batteries†

Mn-based transition metal oxide nanoparticles are promising candidates as cathode active materials for rechargeable magnesium batteries, but their high catalytic activity for oxidative electrolyte decomposition and large surface area deteriorate their cycle performance. A recent study [Yagi et al., J. Mater. Chem. A, 2021, 9, 26401–26409] demonstrated that the catalytic activity was less prominent in Fe-based oxides than in other transition metal oxides, containing Mn. Fe-based oxides show low catalytic activity for oxidative electrolyte decomposition compared with Mn-based congeners. The strong capability of oxalate ions for bridging transition metal ions was utilised to form thin, uniform Fe2O3 layers on nanoparticles of MgMn2O4 and α-MnO2. The resulting Fe2O3 layers effectively suppressed side reactions during insertion and extraction of the Mg2+ ions and improved the capacity retention and cycle performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信