与颜色传感器集成的机器学习回归技术和颜色空间的集成模型:在变色生化分析中的应用

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-01-20 DOI:10.1039/D4RA07510B
Min Joh, Surjith Kumaran, Younseo Shin, Hyunji Cha, Euna Oh, Kyu Hyoung Lee and Hyo-Jick Choi
{"title":"与颜色传感器集成的机器学习回归技术和颜色空间的集成模型:在变色生化分析中的应用","authors":"Min Joh, Surjith Kumaran, Younseo Shin, Hyunji Cha, Euna Oh, Kyu Hyoung Lee and Hyo-Jick Choi","doi":"10.1039/D4RA07510B","DOIUrl":null,"url":null,"abstract":"<p >Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making. In this study, we utilized four different regression models integrated with an RGB sensor for colorimetric analysis. Colorimetric protein concentration assays, such as the bicinchoninic acid (BCA) assay and the Bradford assay, were chosen as model studies to evaluate the performance of the ML-based color sensor. Leveraging regression models, the sensor effectively interprets and processes color data, facilitating precision color detection and analysis. Furthermore, the incorporation of diverse color spaces enhances the sensor's adaptability to various color perception models, promising precise measurement, and analysis capabilities for a range of applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 3","pages":" 1754-1765"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07510b?page=search","citationCount":"0","resultStr":"{\"title\":\"An ensemble model of machine learning regression techniques and color spaces integrated with a color sensor: application to color-changing biochemical assays†\",\"authors\":\"Min Joh, Surjith Kumaran, Younseo Shin, Hyunji Cha, Euna Oh, Kyu Hyoung Lee and Hyo-Jick Choi\",\"doi\":\"10.1039/D4RA07510B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making. In this study, we utilized four different regression models integrated with an RGB sensor for colorimetric analysis. Colorimetric protein concentration assays, such as the bicinchoninic acid (BCA) assay and the Bradford assay, were chosen as model studies to evaluate the performance of the ML-based color sensor. Leveraging regression models, the sensor effectively interprets and processes color data, facilitating precision color detection and analysis. Furthermore, the incorporation of diverse color spaces enhances the sensor's adaptability to various color perception models, promising precise measurement, and analysis capabilities for a range of applications.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 3\",\"pages\":\" 1754-1765\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07510b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07510b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07510b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无损颜色传感器广泛应用于各种生物和医疗保健点护理应用的快速分析。然而,现有的基于红、绿、蓝(RGB)的颜色传感器系统,依赖于转换到人类可感知的颜色空间,如色调、饱和度、明度(HSL)、色调、饱和度、值(HSV),以及青色、品红、黄色、键(CMYK)和CIEL *a*b* (CIELAB),与光谱方法相比,表现出局限性。机器学习(ML)技术的集成为增强数据分析和解释提供了机会,从而实现洞察发现、预测、流程自动化和决策。在这项研究中,我们使用了四种不同的回归模型与RGB传感器集成进行比色分析。比色蛋白浓度测定,如bicinchoninic acid (BCA)测定和Bradford测定,被选择作为模型研究来评估基于ml的颜色传感器的性能。利用回归模型,传感器有效地解释和处理颜色数据,促进精确的颜色检测和分析。此外,不同色彩空间的结合增强了传感器对各种色彩感知模型的适应性,为一系列应用提供了精确的测量和分析能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An ensemble model of machine learning regression techniques and color spaces integrated with a color sensor: application to color-changing biochemical assays†

An ensemble model of machine learning regression techniques and color spaces integrated with a color sensor: application to color-changing biochemical assays†

Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making. In this study, we utilized four different regression models integrated with an RGB sensor for colorimetric analysis. Colorimetric protein concentration assays, such as the bicinchoninic acid (BCA) assay and the Bradford assay, were chosen as model studies to evaluate the performance of the ML-based color sensor. Leveraging regression models, the sensor effectively interprets and processes color data, facilitating precision color detection and analysis. Furthermore, the incorporation of diverse color spaces enhances the sensor's adaptability to various color perception models, promising precise measurement, and analysis capabilities for a range of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信