{"title":"基于无芯光纤的无标记DNA生物分子测量光纤环形激光生物传感器","authors":"Lina Wang and Chong Li","doi":"10.1039/D4RA08156K","DOIUrl":null,"url":null,"abstract":"<p >An erbium-doped fiber ring laser based on a single-mode fiber–no-core fiber–single-mode fiber (SMF-NCF-SMF) structure was constructed and experimentally demonstrated for label-free DNA hybridization measurement. The SMF-NCF-SMF structure acts as a sensing element and a filter to select the laser wavelength. The proposed fiber ring laser sensor exhibits a high optical signal-to-noise ratio (SNR, >50 dB) and narrow full width at half maximum (FWHM, <0.05 nm). Its refractive index sensitivity is 116.8 nm per RIU in the range of 1.3406–1.3705, and its detection limit is 1.79 × 10<small><sup>−4</sup></small> RIU. By continuously monitoring the laser wavelength, we successfully achieved label-free measurement of complementary DNA (cDNA) at concentrations as low as 1 μM. Subsequently, the specificity of the sensor was detected by non-complementary DNA (N-cDNA). Experimental results show that the fiber ring laser biosensor has the advantages of simple operation, label-free measurement, and high specificity. Furthermore, it shows a broad application prospect in several fields, especially in key areas such as medical diagnosis and cancer screening.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 3","pages":" 1831-1837"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08156k?page=search","citationCount":"0","resultStr":"{\"title\":\"Fiber ring laser biosensor based on no-core fibers for label-free DNA biomolecule measurements\",\"authors\":\"Lina Wang and Chong Li\",\"doi\":\"10.1039/D4RA08156K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >An erbium-doped fiber ring laser based on a single-mode fiber–no-core fiber–single-mode fiber (SMF-NCF-SMF) structure was constructed and experimentally demonstrated for label-free DNA hybridization measurement. The SMF-NCF-SMF structure acts as a sensing element and a filter to select the laser wavelength. The proposed fiber ring laser sensor exhibits a high optical signal-to-noise ratio (SNR, >50 dB) and narrow full width at half maximum (FWHM, <0.05 nm). Its refractive index sensitivity is 116.8 nm per RIU in the range of 1.3406–1.3705, and its detection limit is 1.79 × 10<small><sup>−4</sup></small> RIU. By continuously monitoring the laser wavelength, we successfully achieved label-free measurement of complementary DNA (cDNA) at concentrations as low as 1 μM. Subsequently, the specificity of the sensor was detected by non-complementary DNA (N-cDNA). Experimental results show that the fiber ring laser biosensor has the advantages of simple operation, label-free measurement, and high specificity. Furthermore, it shows a broad application prospect in several fields, especially in key areas such as medical diagnosis and cancer screening.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 3\",\"pages\":\" 1831-1837\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08156k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08156k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08156k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fiber ring laser biosensor based on no-core fibers for label-free DNA biomolecule measurements
An erbium-doped fiber ring laser based on a single-mode fiber–no-core fiber–single-mode fiber (SMF-NCF-SMF) structure was constructed and experimentally demonstrated for label-free DNA hybridization measurement. The SMF-NCF-SMF structure acts as a sensing element and a filter to select the laser wavelength. The proposed fiber ring laser sensor exhibits a high optical signal-to-noise ratio (SNR, >50 dB) and narrow full width at half maximum (FWHM, <0.05 nm). Its refractive index sensitivity is 116.8 nm per RIU in the range of 1.3406–1.3705, and its detection limit is 1.79 × 10−4 RIU. By continuously monitoring the laser wavelength, we successfully achieved label-free measurement of complementary DNA (cDNA) at concentrations as low as 1 μM. Subsequently, the specificity of the sensor was detected by non-complementary DNA (N-cDNA). Experimental results show that the fiber ring laser biosensor has the advantages of simple operation, label-free measurement, and high specificity. Furthermore, it shows a broad application prospect in several fields, especially in key areas such as medical diagnosis and cancer screening.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.