Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu
{"title":"一种负载型Au/HZSM-5空气等离子体催化氧化脱甲苯催化剂,采用循环储放(CSD)模式","authors":"Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu","doi":"10.1039/D4EY00159A","DOIUrl":null,"url":null,"abstract":"<p >Air plasma catalytic oxidation of toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) removal. However, the problem of low CO<small><sub>2</sub></small> selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with <em>ca.</em> 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C<small><sub>7</sub></small>H<small><sub>8</sub></small> removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C<small><sub>7</sub></small>H<small><sub>8</sub></small> in dry and wet air plasma. To investigate the mechanism of CO<small><sub>2</sub></small> selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, as well as the adsorption of C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> over Au/HZ, the CO<small><sub>2</sub></small> selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). <em>In situ</em> TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C<small><sub>7</sub></small>H<small><sub>8</sub></small> compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C<small><sub>7</sub></small>H<small><sub>8</sub></small> conversion and CO<small><sub>2</sub></small> selectivity of plasma-catalytic oxidation of C<small><sub>7</sub></small>H<small><sub>8</sub></small> on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, and very high plasma catalytic activity for CO oxidation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 1","pages":" 97-105"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00159a?page=search","citationCount":"0","resultStr":"{\"title\":\"A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode†\",\"authors\":\"Amin Zhou, Xiao-Song Li, Jing-Lin Liu, Lan-Bo Di and Ai-Min Zhu\",\"doi\":\"10.1039/D4EY00159A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Air plasma catalytic oxidation of toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C<small><sub>7</sub></small>H<small><sub>8</sub></small>) removal. However, the problem of low CO<small><sub>2</sub></small> selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with <em>ca.</em> 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C<small><sub>7</sub></small>H<small><sub>8</sub></small> removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C<small><sub>7</sub></small>H<small><sub>8</sub></small> in dry and wet air plasma. To investigate the mechanism of CO<small><sub>2</sub></small> selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, as well as the adsorption of C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C<small><sub>7</sub></small>H<small><sub>8</sub></small> over Au/HZ, the CO<small><sub>2</sub></small> selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). <em>In situ</em> TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C<small><sub>7</sub></small>H<small><sub>8</sub></small> compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C<small><sub>7</sub></small>H<small><sub>8</sub></small> conversion and CO<small><sub>2</sub></small> selectivity of plasma-catalytic oxidation of C<small><sub>7</sub></small>H<small><sub>8</sub></small> on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C<small><sub>7</sub></small>H<small><sub>8</sub></small> and CO, and very high plasma catalytic activity for CO oxidation.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 1\",\"pages\":\" 97-105\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00159a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00159a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00159a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A supported Au/HZSM-5 catalyst for toluene removal by air plasma catalytic oxidation using the cycled storage-discharge (CSD) mode†
Air plasma catalytic oxidation of toluene (C7H8) with the cycled storage-discharge (CSD) mode is a promising technology for toluene (C7H8) removal. However, the problem of low CO2 selectivity must be solved. In this work, a novel HZSM-5 (HZ) supported Au catalyst (Au/HZ) with ca. 5.7 nm Au nanoparticles was prepared by combining impregnation-ammonia washing and plasma treatment, and adopted for C7H8 removal. Au/HZ displays a large breakthrough capacity and an excellent oxidation ability of C7H8 in dry and wet air plasma. To investigate the mechanism of CO2 selectivity improvement with the Au/HZ catalyst, air plasma catalytic oxidation of gaseous C7H8 and CO, as well as the adsorption of C7H8 and CO on the catalysts were conducted. For plasma-catalytic oxidation of gaseous C7H8 over Au/HZ, the CO2 selectivity is 97.5%, significantly higher than those of HZ (55%) and Ag/HZ (62%). In situ TPD tests indicate that Au/HZ possesses a moderate adsorption strength for CO and C7H8 compared with HZ and Ag/HZ. Meanwhile, plasma oxidation of CO over Au/HZ reaches 100%, which is much higher than those of HZ (15%) and Ag/HZ (24%). Nearly 100% C7H8 conversion and CO2 selectivity of plasma-catalytic oxidation of C7H8 on Au/HZ can be attributed to the moderate adsorption strength of Au/HZ for C7H8 and CO, and very high plasma catalytic activity for CO oxidation.