铋基新型Janus单层结构的热电性能

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
KM Sujata, Nidhi Verma, Rekha Garg Solanki and Ashok Kumar
{"title":"铋基新型Janus单层结构的热电性能","authors":"KM Sujata, Nidhi Verma, Rekha Garg Solanki and Ashok Kumar","doi":"10.1039/D4MA00924J","DOIUrl":null,"url":null,"abstract":"<p >This work systematically investigates the stability and electronic and thermoelectric characteristics of newly discovered 2D Janus monolayers BiYZ (Y ≠ Z = Te, Se and S) according to the first-principles theory. Janus BiYZ monolayers are stable based on the AIMD simulations, positive phonon spectra plots and the evaluation of elastic strain tensor. These monolayers show a high carrier mobility (∼10<small><sup>3</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>) and an indirect bandgap nature. The Janus monolayers BiTeSe, BiTeS and BiSeS show an ultralow lattice thermal conductivity of 0.04 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, 0.20 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> and 0.02 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, respectively, at room temperature. Low lattice thermal conductivity is obtained due to a small phonon group velocity, high Grüneisen parameter, small phonon relaxation time and significantly reduced phonon transport. The maximum <em>ZT</em> values at 500 K reach up to 0.97, 0.60 and 1.78 for BiTeSe, BiSeS, and BiTeS monolayers, respectively. Our results suggest Janus BiYZ monolayers to be promising thermoelectric candidates due to their superior thermal and electrical transport characteristics and subsequent strong thermoelectric performance.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 2","pages":" 849-859"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00924j?page=search","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric performance of Bi-based novel Janus monolayer structures†\",\"authors\":\"KM Sujata, Nidhi Verma, Rekha Garg Solanki and Ashok Kumar\",\"doi\":\"10.1039/D4MA00924J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This work systematically investigates the stability and electronic and thermoelectric characteristics of newly discovered 2D Janus monolayers BiYZ (Y ≠ Z = Te, Se and S) according to the first-principles theory. Janus BiYZ monolayers are stable based on the AIMD simulations, positive phonon spectra plots and the evaluation of elastic strain tensor. These monolayers show a high carrier mobility (∼10<small><sup>3</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>) and an indirect bandgap nature. The Janus monolayers BiTeSe, BiTeS and BiSeS show an ultralow lattice thermal conductivity of 0.04 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, 0.20 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> and 0.02 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small>, respectively, at room temperature. Low lattice thermal conductivity is obtained due to a small phonon group velocity, high Grüneisen parameter, small phonon relaxation time and significantly reduced phonon transport. The maximum <em>ZT</em> values at 500 K reach up to 0.97, 0.60 and 1.78 for BiTeSe, BiSeS, and BiTeS monolayers, respectively. Our results suggest Janus BiYZ monolayers to be promising thermoelectric candidates due to their superior thermal and electrical transport characteristics and subsequent strong thermoelectric performance.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 2\",\"pages\":\" 849-859\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00924j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00924j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00924j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文根据第一性原理理论系统地研究了新发现的二维双面膜BiYZ (Y≠Z = Te, Se和S)的稳定性和电子和热电特性。基于AIMD模拟、正声子谱图和弹性应变张量的评估,Janus BiYZ单层膜是稳定的。这些单层具有高载流子迁移率(~ 103 cm2 V−1 s−1)和间接带隙性质。在室温下,Janus单层BiTeSe、BiTeS和BiSeS的晶格热导率分别为0.04 W m−1 K−1、0.20 W m−1 K−1和0.02 W m−1 K−1。由于声子群速度小,颗粒尼森参数高,声子弛豫时间小,声子输运显著减少,从而获得低晶格导热系数。500k时,BiTeSe单层、BiSeS单层和BiTeS单层的ZT最大值分别达到0.97、0.60和1.78。我们的研究结果表明,由于Janus BiYZ单层膜具有优越的热电输运特性和随后的强热电性能,因此它是有希望的热电候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermoelectric performance of Bi-based novel Janus monolayer structures†

Thermoelectric performance of Bi-based novel Janus monolayer structures†

This work systematically investigates the stability and electronic and thermoelectric characteristics of newly discovered 2D Janus monolayers BiYZ (Y ≠ Z = Te, Se and S) according to the first-principles theory. Janus BiYZ monolayers are stable based on the AIMD simulations, positive phonon spectra plots and the evaluation of elastic strain tensor. These monolayers show a high carrier mobility (∼103 cm2 V−1 s−1) and an indirect bandgap nature. The Janus monolayers BiTeSe, BiTeS and BiSeS show an ultralow lattice thermal conductivity of 0.04 W m−1 K−1, 0.20 W m−1 K−1 and 0.02 W m−1 K−1, respectively, at room temperature. Low lattice thermal conductivity is obtained due to a small phonon group velocity, high Grüneisen parameter, small phonon relaxation time and significantly reduced phonon transport. The maximum ZT values at 500 K reach up to 0.97, 0.60 and 1.78 for BiTeSe, BiSeS, and BiTeS monolayers, respectively. Our results suggest Janus BiYZ monolayers to be promising thermoelectric candidates due to their superior thermal and electrical transport characteristics and subsequent strong thermoelectric performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信