{"title":"自由空间光网状网络:综述","authors":"Ferdaous Tarhouni;Ruibo Wang;Mohamed-Slim Alouini","doi":"10.1109/OJCOMS.2025.3525468","DOIUrl":null,"url":null,"abstract":"Free space optical (FSO) communication, known for its high data rates and immunity to electromagnetic interference, encounters challenges such as weather dependency, misalignment issues, and line-of-sight (LoS) requirements. Mesh networks, with their inherent scalability and redundancy, can mitigate these limitations by providing multiple pathways for data transmission and robust network configurations. This paper investigates the key motivations for integrating FSO transmission within mesh structures. We review existing literature on both FSO and hybrid RF/FSO mesh networks, discussing technical studies aimed at maximizing network performance and minimizing delay and cost deployments. We equally explore some relaying approaches in FSO mesh networks and shed light on the advantages of some relaying solutions, mainly, flying platforms and reconfigurable intelligent surfaces (RIS). We discuss the use of FSO in satellite communication to establish two types of mesh networks: inter-satellite and satellite-aerial/ground mesh networks. Finally, some open issues and future research directions are explored.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"642-655"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10821003","citationCount":"0","resultStr":"{\"title\":\"Free Space Optical Mesh Networks: A Survey\",\"authors\":\"Ferdaous Tarhouni;Ruibo Wang;Mohamed-Slim Alouini\",\"doi\":\"10.1109/OJCOMS.2025.3525468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Free space optical (FSO) communication, known for its high data rates and immunity to electromagnetic interference, encounters challenges such as weather dependency, misalignment issues, and line-of-sight (LoS) requirements. Mesh networks, with their inherent scalability and redundancy, can mitigate these limitations by providing multiple pathways for data transmission and robust network configurations. This paper investigates the key motivations for integrating FSO transmission within mesh structures. We review existing literature on both FSO and hybrid RF/FSO mesh networks, discussing technical studies aimed at maximizing network performance and minimizing delay and cost deployments. We equally explore some relaying approaches in FSO mesh networks and shed light on the advantages of some relaying solutions, mainly, flying platforms and reconfigurable intelligent surfaces (RIS). We discuss the use of FSO in satellite communication to establish two types of mesh networks: inter-satellite and satellite-aerial/ground mesh networks. Finally, some open issues and future research directions are explored.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"6 \",\"pages\":\"642-655\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10821003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10821003/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10821003/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Free space optical (FSO) communication, known for its high data rates and immunity to electromagnetic interference, encounters challenges such as weather dependency, misalignment issues, and line-of-sight (LoS) requirements. Mesh networks, with their inherent scalability and redundancy, can mitigate these limitations by providing multiple pathways for data transmission and robust network configurations. This paper investigates the key motivations for integrating FSO transmission within mesh structures. We review existing literature on both FSO and hybrid RF/FSO mesh networks, discussing technical studies aimed at maximizing network performance and minimizing delay and cost deployments. We equally explore some relaying approaches in FSO mesh networks and shed light on the advantages of some relaying solutions, mainly, flying platforms and reconfigurable intelligent surfaces (RIS). We discuss the use of FSO in satellite communication to establish two types of mesh networks: inter-satellite and satellite-aerial/ground mesh networks. Finally, some open issues and future research directions are explored.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.