{"title":"基于Winograd的高性能卷积神经网络加速器架构","authors":"Vardhana M;Rohan Pinto","doi":"10.1109/LCA.2025.3525970","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks are deployed mostly on GPUs or CPUs. However, due to the increasing complexity of architecture and growing performance requirements, these platforms may not be suitable for deploying inference engines. ASIC and FPGA implementations are appearing as superior alternatives to software-based solutions for achieving the required performance. In this article, an efficient architecture for accelerating convolution using the Winograd transform is proposed and implemented on FPGA. The proposed accelerator consumes 38% less resources as compared with conventional GEMM-based implementation. Analysis results indicate that our accelerator can achieve 3.5 TOP/s, 1.28 TOP/s, and 1.42 TOP/s for VGG16, ResNet18, and MobileNetV2 CNNs, respectively, at 250 MHz. The proposed accelerator demonstrates the best energy efficiency as compared with prior arts.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"21-24"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Winograd Based Accelerator Architecture for Convolutional Neural Network\",\"authors\":\"Vardhana M;Rohan Pinto\",\"doi\":\"10.1109/LCA.2025.3525970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks are deployed mostly on GPUs or CPUs. However, due to the increasing complexity of architecture and growing performance requirements, these platforms may not be suitable for deploying inference engines. ASIC and FPGA implementations are appearing as superior alternatives to software-based solutions for achieving the required performance. In this article, an efficient architecture for accelerating convolution using the Winograd transform is proposed and implemented on FPGA. The proposed accelerator consumes 38% less resources as compared with conventional GEMM-based implementation. Analysis results indicate that our accelerator can achieve 3.5 TOP/s, 1.28 TOP/s, and 1.42 TOP/s for VGG16, ResNet18, and MobileNetV2 CNNs, respectively, at 250 MHz. The proposed accelerator demonstrates the best energy efficiency as compared with prior arts.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"24 1\",\"pages\":\"21-24\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833703/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833703/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
High-Performance Winograd Based Accelerator Architecture for Convolutional Neural Network
Convolutional Neural Networks are deployed mostly on GPUs or CPUs. However, due to the increasing complexity of architecture and growing performance requirements, these platforms may not be suitable for deploying inference engines. ASIC and FPGA implementations are appearing as superior alternatives to software-based solutions for achieving the required performance. In this article, an efficient architecture for accelerating convolution using the Winograd transform is proposed and implemented on FPGA. The proposed accelerator consumes 38% less resources as compared with conventional GEMM-based implementation. Analysis results indicate that our accelerator can achieve 3.5 TOP/s, 1.28 TOP/s, and 1.42 TOP/s for VGG16, ResNet18, and MobileNetV2 CNNs, respectively, at 250 MHz. The proposed accelerator demonstrates the best energy efficiency as compared with prior arts.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.