C. H. Lo;M. C. Lin;Y. C. Hsu;M. K. Yeh;F. Y. Chang;Z. K. Liu;M. H. Chang;F. T. Chung;L. J. Chen;Y. T. Li;S. W. Chang;C. H. Huang;M. S. Yeh;Ch. Wang
{"title":"双单元1.5 ghz超导射频腔的弹塑性调谐","authors":"C. H. Lo;M. C. Lin;Y. C. Hsu;M. K. Yeh;F. Y. Chang;Z. K. Liu;M. H. Chang;F. T. Chung;L. J. Chen;Y. T. Li;S. W. Chang;C. H. Huang;M. S. Yeh;Ch. Wang","doi":"10.1109/TASC.2024.3522907","DOIUrl":null,"url":null,"abstract":"The National Synchrotron Radiation Research Center (NSRRC) is developing a 2-cell 1.5-GHz superconducting radio-frequency (SRF) module. This SRF cavity's fundamental π-mode frequency must be adjusted within a specific tolerance by applying a longitudinal displacement to its structure, extending it into the elastoplastic range. A one-quarter symmetric model is established to simulate the frequency tuning process, taking into account the structural elastoplastic behavior. A multi-physics computing process is also employed to calculate this SRF cavity's π-mode frequency after structure deformation. The resonance frequency at every tuning step, along with the overall frequency shift after pre-tuning, can be computed, in addition to the structural behavior and stress distribution. Initially this SRF cavity is tuned with a small elastoplastic deformation following it's construction. It then undergoes a complete tuning to reach the proper resonance frequency after being electropolished and annealed. This work represents the first successful demonstration of tuning an SRF cavity with its interior in vacuum, effectively eliminating the disturbance caused by air's permittivity on the frequency shift.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastoplastic Tuning on a Two-Cell 1.5-GHz Superconducting Radio-Frequency Cavity\",\"authors\":\"C. H. Lo;M. C. Lin;Y. C. Hsu;M. K. Yeh;F. Y. Chang;Z. K. Liu;M. H. Chang;F. T. Chung;L. J. Chen;Y. T. Li;S. W. Chang;C. H. Huang;M. S. Yeh;Ch. Wang\",\"doi\":\"10.1109/TASC.2024.3522907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The National Synchrotron Radiation Research Center (NSRRC) is developing a 2-cell 1.5-GHz superconducting radio-frequency (SRF) module. This SRF cavity's fundamental π-mode frequency must be adjusted within a specific tolerance by applying a longitudinal displacement to its structure, extending it into the elastoplastic range. A one-quarter symmetric model is established to simulate the frequency tuning process, taking into account the structural elastoplastic behavior. A multi-physics computing process is also employed to calculate this SRF cavity's π-mode frequency after structure deformation. The resonance frequency at every tuning step, along with the overall frequency shift after pre-tuning, can be computed, in addition to the structural behavior and stress distribution. Initially this SRF cavity is tuned with a small elastoplastic deformation following it's construction. It then undergoes a complete tuning to reach the proper resonance frequency after being electropolished and annealed. This work represents the first successful demonstration of tuning an SRF cavity with its interior in vacuum, effectively eliminating the disturbance caused by air's permittivity on the frequency shift.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 5\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816544/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10816544/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Elastoplastic Tuning on a Two-Cell 1.5-GHz Superconducting Radio-Frequency Cavity
The National Synchrotron Radiation Research Center (NSRRC) is developing a 2-cell 1.5-GHz superconducting radio-frequency (SRF) module. This SRF cavity's fundamental π-mode frequency must be adjusted within a specific tolerance by applying a longitudinal displacement to its structure, extending it into the elastoplastic range. A one-quarter symmetric model is established to simulate the frequency tuning process, taking into account the structural elastoplastic behavior. A multi-physics computing process is also employed to calculate this SRF cavity's π-mode frequency after structure deformation. The resonance frequency at every tuning step, along with the overall frequency shift after pre-tuning, can be computed, in addition to the structural behavior and stress distribution. Initially this SRF cavity is tuned with a small elastoplastic deformation following it's construction. It then undergoes a complete tuning to reach the proper resonance frequency after being electropolished and annealed. This work represents the first successful demonstration of tuning an SRF cavity with its interior in vacuum, effectively eliminating the disturbance caused by air's permittivity on the frequency shift.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.