基于广义矢量测量的姿态估计中的双四元数演化

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Liu;Jin Wu;Fulong Ma;Chengxi Zhang
{"title":"基于广义矢量测量的姿态估计中的双四元数演化","authors":"Yang Liu;Jin Wu;Fulong Ma;Chengxi Zhang","doi":"10.1109/LSENS.2024.3521956","DOIUrl":null,"url":null,"abstract":"This letter investigates attitude estimation based on biquaternions (complex quaternions) for robotic applications utilizing a single-vector observation from sensors, such as accelerometer and magnetometer. In this work, we discover the evolution of novel form of quaternion, termed the biquaternion, where each component is a complex number instead of a real scalar, in the attitude approximation process. This biquaternion form arises from the intermediate solution of differential equations obtained from quaternion attitude dynamics. We study the evolution trajectories of biquaternions in the attitude estimation workspace, unveiling their inherent patterns and physical interpretations. Furthermore, we investigate the convergence performance of the biquaternion-based attitude estimator by tuning different parameters, demonstrating its potential superiority over traditional real quaternion estimators. The proposed biquaternion attitude estimation framework offers a unique perspective on attitude representation and opens up new avenues for enhancing estimation accuracy and robustness.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biquaternion Evolution in Attitude Estimation Using a Generalized Vector Measurement\",\"authors\":\"Yang Liu;Jin Wu;Fulong Ma;Chengxi Zhang\",\"doi\":\"10.1109/LSENS.2024.3521956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter investigates attitude estimation based on biquaternions (complex quaternions) for robotic applications utilizing a single-vector observation from sensors, such as accelerometer and magnetometer. In this work, we discover the evolution of novel form of quaternion, termed the biquaternion, where each component is a complex number instead of a real scalar, in the attitude approximation process. This biquaternion form arises from the intermediate solution of differential equations obtained from quaternion attitude dynamics. We study the evolution trajectories of biquaternions in the attitude estimation workspace, unveiling their inherent patterns and physical interpretations. Furthermore, we investigate the convergence performance of the biquaternion-based attitude estimator by tuning different parameters, demonstrating its potential superiority over traditional real quaternion estimators. The proposed biquaternion attitude estimation framework offers a unique perspective on attitude representation and opens up new avenues for enhancing estimation accuracy and robustness.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 2\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10814071/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10814071/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信研究了基于双四元数(复四元数)的姿态估计,用于机器人应用,利用传感器(如加速度计和磁力计)的单向量观测。在这项工作中,我们发现了一种新的四元数形式的演变,称为双四元数,其中每个分量都是复数而不是实标量,在姿态近似过程中。这种双四元数形式是由四元数姿态动力学微分方程的中间解产生的。研究了姿态估计工作空间中双四元数的演化轨迹,揭示了其固有模式和物理解释。此外,我们通过调整不同的参数研究了基于双四元数的姿态估计器的收敛性能,证明了它比传统的真实四元数估计器具有潜在的优势。所提出的二四元数姿态估计框架提供了一种独特的姿态表示视角,为提高姿态估计精度和鲁棒性开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biquaternion Evolution in Attitude Estimation Using a Generalized Vector Measurement
This letter investigates attitude estimation based on biquaternions (complex quaternions) for robotic applications utilizing a single-vector observation from sensors, such as accelerometer and magnetometer. In this work, we discover the evolution of novel form of quaternion, termed the biquaternion, where each component is a complex number instead of a real scalar, in the attitude approximation process. This biquaternion form arises from the intermediate solution of differential equations obtained from quaternion attitude dynamics. We study the evolution trajectories of biquaternions in the attitude estimation workspace, unveiling their inherent patterns and physical interpretations. Furthermore, we investigate the convergence performance of the biquaternion-based attitude estimator by tuning different parameters, demonstrating its potential superiority over traditional real quaternion estimators. The proposed biquaternion attitude estimation framework offers a unique perspective on attitude representation and opens up new avenues for enhancing estimation accuracy and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信