R. Tufan Erdogan;Georgy A. Filonenko;Stephen J. Picken;Peter G. Steeneken;Wouter J. Westerveld
{"title":"优化包层弹性以提高硅光子超声传感器的灵敏度","authors":"R. Tufan Erdogan;Georgy A. Filonenko;Stephen J. Picken;Peter G. Steeneken;Wouter J. Westerveld","doi":"10.1109/JLT.2024.3485074","DOIUrl":null,"url":null,"abstract":"Ultrasound is widely used in medical imaging, and emerging photo-acoustic imaging is crucial for disease diagnosis. Currently, high-end photo-acoustic imaging systems rely on piezo-electric materials for detecting ultrasound waves, which come with sensitivity, noise, and bandwidth limitations. Advanced applications demand a large matrix of broadband, high-resolution, and scalable ultrasound sensors. Silicon photonic circuits have been introduced to meet these requirements by detecting ultrasound-induced deformation and stress in silicon waveguides. Although higher sensitivities could facilitate the exploration of new applications, the high stiffness of the waveguide materials constrains the intrinsic sensitivity of the silicon photonic circuits to ultrasound signals. Here, we explore the impact of the mechanical properties of a polymer cladding on the sensitivity of silicon photonic ultrasound sensors. Our model and experiments reveal that optimizing the polymer cladding's stiffness enhances the resonance wavelength sensitivity. Experimentally, we show a fourfold increase in the sensitivity compared to the sensors without a cladding polymer and, a twofold sensitivity increase compared to the sensors with a cladding polymer of saturated cross-linking density. Interestingly, comparing experiments with the optomechanical model suggests that the change in Young's Modulus alone cannot explain the sensitivity increase. In conclusion, polymer-coated silicon photonic ultrasound sensors exhibit potential for advanced photo-acoustic imaging applications. It offers the prospect of increasing the ultrasound detection sensitivity of silicon photonic ultrasound sensors while using CMOS-compatible processes. This paves the way to integrate the polymer-coated silicon photonic ultrasound sensors with electronics to utilize the sensors in advanced medical imaging applications.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"43 3","pages":"1419-1428"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Cladding Elasticity to Enhance Sensitivity in Silicon Photonic Ultrasound Sensors\",\"authors\":\"R. Tufan Erdogan;Georgy A. Filonenko;Stephen J. Picken;Peter G. Steeneken;Wouter J. Westerveld\",\"doi\":\"10.1109/JLT.2024.3485074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound is widely used in medical imaging, and emerging photo-acoustic imaging is crucial for disease diagnosis. Currently, high-end photo-acoustic imaging systems rely on piezo-electric materials for detecting ultrasound waves, which come with sensitivity, noise, and bandwidth limitations. Advanced applications demand a large matrix of broadband, high-resolution, and scalable ultrasound sensors. Silicon photonic circuits have been introduced to meet these requirements by detecting ultrasound-induced deformation and stress in silicon waveguides. Although higher sensitivities could facilitate the exploration of new applications, the high stiffness of the waveguide materials constrains the intrinsic sensitivity of the silicon photonic circuits to ultrasound signals. Here, we explore the impact of the mechanical properties of a polymer cladding on the sensitivity of silicon photonic ultrasound sensors. Our model and experiments reveal that optimizing the polymer cladding's stiffness enhances the resonance wavelength sensitivity. Experimentally, we show a fourfold increase in the sensitivity compared to the sensors without a cladding polymer and, a twofold sensitivity increase compared to the sensors with a cladding polymer of saturated cross-linking density. Interestingly, comparing experiments with the optomechanical model suggests that the change in Young's Modulus alone cannot explain the sensitivity increase. In conclusion, polymer-coated silicon photonic ultrasound sensors exhibit potential for advanced photo-acoustic imaging applications. It offers the prospect of increasing the ultrasound detection sensitivity of silicon photonic ultrasound sensors while using CMOS-compatible processes. This paves the way to integrate the polymer-coated silicon photonic ultrasound sensors with electronics to utilize the sensors in advanced medical imaging applications.\",\"PeriodicalId\":16144,\"journal\":{\"name\":\"Journal of Lightwave Technology\",\"volume\":\"43 3\",\"pages\":\"1419-1428\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lightwave Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734212/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734212/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimizing Cladding Elasticity to Enhance Sensitivity in Silicon Photonic Ultrasound Sensors
Ultrasound is widely used in medical imaging, and emerging photo-acoustic imaging is crucial for disease diagnosis. Currently, high-end photo-acoustic imaging systems rely on piezo-electric materials for detecting ultrasound waves, which come with sensitivity, noise, and bandwidth limitations. Advanced applications demand a large matrix of broadband, high-resolution, and scalable ultrasound sensors. Silicon photonic circuits have been introduced to meet these requirements by detecting ultrasound-induced deformation and stress in silicon waveguides. Although higher sensitivities could facilitate the exploration of new applications, the high stiffness of the waveguide materials constrains the intrinsic sensitivity of the silicon photonic circuits to ultrasound signals. Here, we explore the impact of the mechanical properties of a polymer cladding on the sensitivity of silicon photonic ultrasound sensors. Our model and experiments reveal that optimizing the polymer cladding's stiffness enhances the resonance wavelength sensitivity. Experimentally, we show a fourfold increase in the sensitivity compared to the sensors without a cladding polymer and, a twofold sensitivity increase compared to the sensors with a cladding polymer of saturated cross-linking density. Interestingly, comparing experiments with the optomechanical model suggests that the change in Young's Modulus alone cannot explain the sensitivity increase. In conclusion, polymer-coated silicon photonic ultrasound sensors exhibit potential for advanced photo-acoustic imaging applications. It offers the prospect of increasing the ultrasound detection sensitivity of silicon photonic ultrasound sensors while using CMOS-compatible processes. This paves the way to integrate the polymer-coated silicon photonic ultrasound sensors with electronics to utilize the sensors in advanced medical imaging applications.
期刊介绍:
The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.