{"title":"雷达SLAM中点不确定性的引入","authors":"Yang Xu;Qiucan Huang;Shaojie Shen;Huan Yin","doi":"10.1109/LRA.2025.3527344","DOIUrl":null,"url":null,"abstract":"Radar SLAM is robust in challenging conditions, such as fog, dust, and smoke, but suffers from the sparsity and noisiness of radar sensing, including speckle noise and multipath effects. This study provides a performance-enhanced radar SLAM system by incorporating point uncertainty. The basic system is a radar-inertial odometry system that leverages velocity-aided radar points and high-frequency inertial measurements. We first propose to model the uncertainty of radar points in polar coordinates by considering the nature of radar sensing. Then, the proposed uncertainty model is integrated into the data association module and incorporated for back-end state estimation. Real-world experiments on both public and self-collected datasets validate the effectiveness of the proposed models and approaches. The findings highlight the potential of incorporating point uncertainty to improve the radar SLAM system.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 3","pages":"2168-2175"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Point Uncertainty in Radar SLAM\",\"authors\":\"Yang Xu;Qiucan Huang;Shaojie Shen;Huan Yin\",\"doi\":\"10.1109/LRA.2025.3527344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radar SLAM is robust in challenging conditions, such as fog, dust, and smoke, but suffers from the sparsity and noisiness of radar sensing, including speckle noise and multipath effects. This study provides a performance-enhanced radar SLAM system by incorporating point uncertainty. The basic system is a radar-inertial odometry system that leverages velocity-aided radar points and high-frequency inertial measurements. We first propose to model the uncertainty of radar points in polar coordinates by considering the nature of radar sensing. Then, the proposed uncertainty model is integrated into the data association module and incorporated for back-end state estimation. Real-world experiments on both public and self-collected datasets validate the effectiveness of the proposed models and approaches. The findings highlight the potential of incorporating point uncertainty to improve the radar SLAM system.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 3\",\"pages\":\"2168-2175\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833750/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10833750/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Radar SLAM is robust in challenging conditions, such as fog, dust, and smoke, but suffers from the sparsity and noisiness of radar sensing, including speckle noise and multipath effects. This study provides a performance-enhanced radar SLAM system by incorporating point uncertainty. The basic system is a radar-inertial odometry system that leverages velocity-aided radar points and high-frequency inertial measurements. We first propose to model the uncertainty of radar points in polar coordinates by considering the nature of radar sensing. Then, the proposed uncertainty model is integrated into the data association module and incorporated for back-end state estimation. Real-world experiments on both public and self-collected datasets validate the effectiveness of the proposed models and approaches. The findings highlight the potential of incorporating point uncertainty to improve the radar SLAM system.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.