{"title":"分布状态估计的一致迭代后验线性化滤波器","authors":"Ángel F. García-Fernández;Giorgio Battistelli","doi":"10.1109/LSP.2025.3526092","DOIUrl":null,"url":null,"abstract":"This paper presents the consensus iterated posterior linearisation filter (IPLF) for distributed state estimation. The consensus IPLF algorithm is based on a measurement model described by its conditional mean and covariance given the state, and performs iterated statistical linear regressions of the measurements with respect to the current approximation of the posterior to improve estimation performance. Three variants of the algorithm are presented based on the type of consensus that is used: consensus on information, consensus on measurements, and hybrid consensus on measurements and information. Simulation results show the benefits of the proposed algorithm in distributed state estimation.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"561-565"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus Iterated Posterior Linearization Filter for Distributed State Estimation\",\"authors\":\"Ángel F. García-Fernández;Giorgio Battistelli\",\"doi\":\"10.1109/LSP.2025.3526092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the consensus iterated posterior linearisation filter (IPLF) for distributed state estimation. The consensus IPLF algorithm is based on a measurement model described by its conditional mean and covariance given the state, and performs iterated statistical linear regressions of the measurements with respect to the current approximation of the posterior to improve estimation performance. Three variants of the algorithm are presented based on the type of consensus that is used: consensus on information, consensus on measurements, and hybrid consensus on measurements and information. Simulation results show the benefits of the proposed algorithm in distributed state estimation.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"561-565\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10824924/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10824924/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Consensus Iterated Posterior Linearization Filter for Distributed State Estimation
This paper presents the consensus iterated posterior linearisation filter (IPLF) for distributed state estimation. The consensus IPLF algorithm is based on a measurement model described by its conditional mean and covariance given the state, and performs iterated statistical linear regressions of the measurements with respect to the current approximation of the posterior to improve estimation performance. Three variants of the algorithm are presented based on the type of consensus that is used: consensus on information, consensus on measurements, and hybrid consensus on measurements and information. Simulation results show the benefits of the proposed algorithm in distributed state estimation.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.