{"title":"使用聊天机器人促进在线自我调节学习和社交存在:基于证据的设计原则","authors":"Weijiao Huang;Khe Foon Hew","doi":"10.1109/TLT.2024.3523199","DOIUrl":null,"url":null,"abstract":"In an online learning environment, both instruction and assessments take place virtually where students are primarily responsible for managing their own learning. This requires a high level of self-regulation from students. Many online students, however, lack self-regulation skills and are ill-prepared for autonomous learning, which can cause students to feel disengaged from online activities. In addition, students tend to feel isolated during online activities due to limited social interaction. To address these challenges, this study explores the use of chatbots to facilitate students’ self-regulated learning strategies and promote social presence to alleviate their feelings of isolation. Using a two-phase mixed-methods design, this study evaluates students’ behavioral engagement, perceived self-regulated learning strategies, and social presence in chatbot-supported online learning. In the first phase (Stage I Study), 39 students engaged in a goal-setting chatbot activity that employed the SMART framework and social presence indicators. The findings served as the basis for improving the chatbot design in the second phase (Stage II Study), in which 25 students interacted with the revised chatbot, focusing on goal-setting, help-seeking, self-evaluation, and social interaction with instructor's presence. The results show that the students in both studies had positive online learning experiences with the chatbots. Follow-up interviews with students and instructors provide valuable insights and suggestions for refining the chatbot design, such as chatbots for ongoing monitoring of self-regulation habits and personalized social interaction. Drawing from the evidence, we discuss a set of chatbot design principles that support students’ self-regulated learning and social presence in online settings.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"56-71"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facilitating Online Self-Regulated Learning and Social Presence Using Chatbots: Evidence-Based Design Principles\",\"authors\":\"Weijiao Huang;Khe Foon Hew\",\"doi\":\"10.1109/TLT.2024.3523199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an online learning environment, both instruction and assessments take place virtually where students are primarily responsible for managing their own learning. This requires a high level of self-regulation from students. Many online students, however, lack self-regulation skills and are ill-prepared for autonomous learning, which can cause students to feel disengaged from online activities. In addition, students tend to feel isolated during online activities due to limited social interaction. To address these challenges, this study explores the use of chatbots to facilitate students’ self-regulated learning strategies and promote social presence to alleviate their feelings of isolation. Using a two-phase mixed-methods design, this study evaluates students’ behavioral engagement, perceived self-regulated learning strategies, and social presence in chatbot-supported online learning. In the first phase (Stage I Study), 39 students engaged in a goal-setting chatbot activity that employed the SMART framework and social presence indicators. The findings served as the basis for improving the chatbot design in the second phase (Stage II Study), in which 25 students interacted with the revised chatbot, focusing on goal-setting, help-seeking, self-evaluation, and social interaction with instructor's presence. The results show that the students in both studies had positive online learning experiences with the chatbots. Follow-up interviews with students and instructors provide valuable insights and suggestions for refining the chatbot design, such as chatbots for ongoing monitoring of self-regulation habits and personalized social interaction. Drawing from the evidence, we discuss a set of chatbot design principles that support students’ self-regulated learning and social presence in online settings.\",\"PeriodicalId\":49191,\"journal\":{\"name\":\"IEEE Transactions on Learning Technologies\",\"volume\":\"18 \",\"pages\":\"56-71\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Learning Technologies\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816550/\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10816550/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Facilitating Online Self-Regulated Learning and Social Presence Using Chatbots: Evidence-Based Design Principles
In an online learning environment, both instruction and assessments take place virtually where students are primarily responsible for managing their own learning. This requires a high level of self-regulation from students. Many online students, however, lack self-regulation skills and are ill-prepared for autonomous learning, which can cause students to feel disengaged from online activities. In addition, students tend to feel isolated during online activities due to limited social interaction. To address these challenges, this study explores the use of chatbots to facilitate students’ self-regulated learning strategies and promote social presence to alleviate their feelings of isolation. Using a two-phase mixed-methods design, this study evaluates students’ behavioral engagement, perceived self-regulated learning strategies, and social presence in chatbot-supported online learning. In the first phase (Stage I Study), 39 students engaged in a goal-setting chatbot activity that employed the SMART framework and social presence indicators. The findings served as the basis for improving the chatbot design in the second phase (Stage II Study), in which 25 students interacted with the revised chatbot, focusing on goal-setting, help-seeking, self-evaluation, and social interaction with instructor's presence. The results show that the students in both studies had positive online learning experiences with the chatbots. Follow-up interviews with students and instructors provide valuable insights and suggestions for refining the chatbot design, such as chatbots for ongoing monitoring of self-regulation habits and personalized social interaction. Drawing from the evidence, we discuss a set of chatbot design principles that support students’ self-regulated learning and social presence in online settings.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.