切换带有自终止写操作的SOT-MRAM架构

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ebenezer C. Usih;Naimul Hassan;Alexander J. Edwards;Felipe Garcia-Sanchez;Pedram Khalili Amiri;Joseph S. Friedman
{"title":"切换带有自终止写操作的SOT-MRAM架构","authors":"Ebenezer C. Usih;Naimul Hassan;Alexander J. Edwards;Felipe Garcia-Sanchez;Pedram Khalili Amiri;Joseph S. Friedman","doi":"10.1109/TVLSI.2024.3471528","DOIUrl":null,"url":null,"abstract":"Toggle spin-orbit torque (SOT)-driven magnetoresistive random access memory (MRAM) with perpendicular anisotropy has a simple material stack and is more robust than directional SOT-MRAM. However, a read-before-write operation is required to use the toggle SOT-MRAM for directional switching, which threatens to increase the write delay. To resolve these issues, we propose a high-speed memory architecture for toggle SOT-MRAM that includes a minimum-sized bit cell and a custom read-write driver. The proposed driver induces an analog self-terminating SOT current that functions via an analog feedback mechanism that can read and write the toggle SOT-MRAM bit cell within a single clock cycle. As the read and write operations are completed within 570 ps, this memory architecture provides the first viable solution for nonvolatile L3 cache.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 2","pages":"337-345"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toggle SOT-MRAM Architecture With Self-Terminating Write Operation\",\"authors\":\"Ebenezer C. Usih;Naimul Hassan;Alexander J. Edwards;Felipe Garcia-Sanchez;Pedram Khalili Amiri;Joseph S. Friedman\",\"doi\":\"10.1109/TVLSI.2024.3471528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Toggle spin-orbit torque (SOT)-driven magnetoresistive random access memory (MRAM) with perpendicular anisotropy has a simple material stack and is more robust than directional SOT-MRAM. However, a read-before-write operation is required to use the toggle SOT-MRAM for directional switching, which threatens to increase the write delay. To resolve these issues, we propose a high-speed memory architecture for toggle SOT-MRAM that includes a minimum-sized bit cell and a custom read-write driver. The proposed driver induces an analog self-terminating SOT current that functions via an analog feedback mechanism that can read and write the toggle SOT-MRAM bit cell within a single clock cycle. As the read and write operations are completed within 570 ps, this memory architecture provides the first viable solution for nonvolatile L3 cache.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"33 2\",\"pages\":\"337-345\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10710331/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10710331/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

垂直各向异性的开关自旋轨道转矩驱动磁阻随机存取存储器(MRAM)具有材料堆叠简单、鲁棒性好等优点。然而,使用切换式SOT-MRAM进行定向切换需要先读后写操作,这可能会增加写入延迟。为了解决这些问题,我们提出了一种用于切换SOT-MRAM的高速存储器架构,其中包括最小尺寸的位单元和自定义读写驱动程序。所提出的驱动器诱导模拟自终止SOT电流,该电流通过模拟反馈机制起作用,该机制可以在单个时钟周期内读写切换SOT- mram位单元。由于读写操作在570ps内完成,这种内存体系结构为非易失性L3缓存提供了第一个可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toggle SOT-MRAM Architecture With Self-Terminating Write Operation
Toggle spin-orbit torque (SOT)-driven magnetoresistive random access memory (MRAM) with perpendicular anisotropy has a simple material stack and is more robust than directional SOT-MRAM. However, a read-before-write operation is required to use the toggle SOT-MRAM for directional switching, which threatens to increase the write delay. To resolve these issues, we propose a high-speed memory architecture for toggle SOT-MRAM that includes a minimum-sized bit cell and a custom read-write driver. The proposed driver induces an analog self-terminating SOT current that functions via an analog feedback mechanism that can read and write the toggle SOT-MRAM bit cell within a single clock cycle. As the read and write operations are completed within 570 ps, this memory architecture provides the first viable solution for nonvolatile L3 cache.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信